Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38063294

RESUMO

The zoonotic rabies virus (RABV) is a non-segmented negative-sense RNA virus classified within the family Rhabdoviridae, and is the most common aetiological agent responsible for fatal rabies disease. The RABV glycoprotein (G) forms trimeric spikes that protrude from RABV virions and mediate virus attachment, entry and spread, and is a major determinant of RABV pathogenesis. A range of RABV strains exist that are highly pathogenic in part due to their ability to evade host immune detection. However, some strains are disease-attenuated and can be cleared by host defences. A detailed molecular understanding of how strain variation relates to pathogenesis is currently lacking. Here, we reveal key differences in the trafficking profiles of RABV-G proteins from the challenge virus standard strain (CVS-11) and a highly attenuated vaccine strain SAD-B19 (SAD). We show that CVS-G traffics to the cell surface and undergoes rapid internalization through both clathrin- and cholesterol-dependent endocytic pathways. In contrast, SAD-G remains resident at the plasma membrane and internalizes at a significantly slower rate. Through engineering hybrids of CVS-G and SAD-G, we show that the cytoplasmic tail of CVS-G is the key determinant of these different internalization profiles. Alanine scanning further revealed that mutation of Y497 in CVS-G (H497 in SAD-G) could reduce the rate of internalization to SAD-G levels. Together, these data reveal new phenotypic differences between CVS-G and SAD-G proteins that may contribute to altered in vivo pathogenicity.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Humanos , Internalização do Vírus , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
2.
J Biol Chem ; 294(18): 7335-7347, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804209

RESUMO

The Bunyavirales order of segmented negative-sense RNA viruses includes more than 500 isolates that infect insects, animals, and plants and are often associated with severe and fatal disease in humans. To multiply and cause disease, bunyaviruses must translocate their genomes from outside the cell into the cytosol, achieved by transit through the endocytic network. We have previously shown that the model bunyaviruses Bunyamwera virus (BUNV) and Hazara virus (HAZV) exploit the changing potassium concentration ([K+]) of maturing endosomes to release their genomes at the appropriate endosomal location. K+ was identified as a biochemical cue to activate the viral fusion machinery, promoting fusion between viral and cellular membranes, consequently permitting genome release. In this study, we further define the biochemical prerequisites for BUNV and HAZV entry and their K+ dependence. Using drug-mediated cholesterol extraction along with viral entry and K+ uptake assays, we report three major findings: BUNV and HAZV require cellular cholesterol during endosomal escape; cholesterol depletion from host cells impairs K+ accumulation in maturing endosomes, revealing new insights into endosomal K+ homeostasis; and "priming" BUNV and HAZV virions with K+ before infection alleviates their cholesterol requirement. Taken together, our findings suggest a model in which cholesterol abundance influences endosomal K+ levels and, consequently, the efficiency of bunyavirus infection. The ability to inhibit bunyaviruses with existing cholesterol-lowering drugs may offer new options for future antiviral interventions for pathogenic bunyaviruses.


Assuntos
Colesterol/metabolismo , Endossomos/metabolismo , Orthobunyavirus/fisiologia , Potássio/metabolismo , Internalização do Vírus , Linhagem Celular Tumoral , Endocitose , Humanos , Transporte de Íons , Vírion/fisiologia
3.
Virus Res ; 346: 199409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815869

RESUMO

Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of cases. CCHFV is listed as a priority pathogen by the World Health Organization (WHO) and there are currently no widely-approved vaccines. Defining a serological correlate of protection against CCHFV infection would support the development of vaccines by providing a 'target threshold' for pre-clinical and clinical immunogenicity studies to achieve in subjects and potentially obviate the need for in vivo protection studies. We therefore sought to establish titratable protection against CCHFV using pooled human convalescent plasma, in a mouse model. Convalescent plasma collected from seven individuals with a known previous CCHFV virus infection were characterised using binding antibody and neutralisation assays. All plasma recognised nucleoprotein and the Gc glycoprotein, but some had a lower Gn glycoprotein response by ELISA. Pooled plasma and two individual donations from convalescent donors were administered intraperitoneally to A129 mice 24 h prior to intradermal challenge with CCHFV (strain IbAr10200). A partial protective effect was observed with all three convalescent plasmas characterised by longer survival post-challenge and reduced clinical score. These protective responses were titratable. Further characterisation of the serological reactivities within these samples will establish their value as reference materials to support assay harmonisation and accelerate vaccine development for CCHFV.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Testes de Neutralização , Plasma/imunologia , Masculino
4.
Nat Commun ; 14(1): 5885, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735161

RESUMO

Following endocytosis, enveloped viruses employ the changing environment of maturing endosomes as cues to promote endosomal escape, a process often mediated by viral glycoproteins. We previously showed that both high [K+] and low pH promote entry of Bunyamwera virus (BUNV), the prototypical bunyavirus. Here, we use sub-tomogram averaging and AlphaFold, to generate a pseudo-atomic model of the whole BUNV glycoprotein envelope. We unambiguously locate the Gc fusion domain and its chaperone Gn within the floor domain of the spike. Furthermore, viral incubation at low pH and high [K+], reminiscent of endocytic conditions, results in a dramatic rearrangement of the BUNV envelope. Structural and biochemical assays indicate that pH 6.3/K+ in the absence of a target membrane elicits a fusion-capable triggered intermediate state of BUNV GPs; but the same conditions induce fusion when target membranes are present. Taken together, we provide mechanistic understanding of the requirements for bunyavirus entry.


Assuntos
Vírus Bunyamwera , Orthobunyavirus , Bioensaio , Sinais (Psicologia) , Concentração de Íons de Hidrogênio
5.
Viruses ; 12(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756358

RESUMO

Ion channels play key roles in almost all facets of cellular physiology and have emerged as key host cell factors for a multitude of viral infections. A catalogue of ion channel-blocking drugs have been shown to possess antiviral activity, some of which are in widespread human usage for ion channel-related diseases, highlighting new potential for drug repurposing. The emergence of ion channel-virus interactions has also revealed the intriguing possibility that channelopathies may explain some commonly observed virus induced pathologies. This field is rapidly evolving and an up-to-date summary of new discoveries can inform future perspectives. We herein discuss the role of ion channels during viral lifecycles, describe the recently identified ion channel drugs that can inhibit viral infections, and highlight the potential contribution of ion channels to virus-mediated disease.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Viroses/tratamento farmacológico , Animais , Canais de Cálcio/metabolismo , Canalopatias/metabolismo , Canalopatias/virologia , Canais de Cloreto/metabolismo , Reposicionamento de Medicamentos , Humanos , Canais de Sódio/metabolismo , Viroses/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA