Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 142(11): 2037-47, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25953344

RESUMO

Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fase G1 , Coração/embriologia , Mamíferos/embriologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fase S , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Embrião de Mamíferos/metabolismo , Feminino , Integrases/metabolismo , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/ultraestrutura
2.
Development ; 141(15): 3040-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24993940

RESUMO

The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Membrana Basal/metabolismo , Adesão Celular , Movimento Celular , Cardiopatias Congênitas/metabolismo , Processamento de Imagem Assistida por Computador , Morfogênese , Miocárdio/patologia , Miócitos Cardíacos/citologia , Fenótipo , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
3.
Bioessays ; 36(3): 251-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323945

RESUMO

The establishment of a functional vascular system requires multiple complex steps throughout embryogenesis, from endothelial cell (EC) specification to vascular patterning into venous and arterial hierarchies. Following the initial assembly of ECs into a network of cord-like structures, vascular expansion and remodeling occur rapidly through morphogenetic events including vessel sprouting, fusion, and pruning. In addition, vascular morphogenesis encompasses the process of lumen formation, critical for the transformation of cords into perfusable vascular tubes. Studies in mouse, zebrafish, frog, and human endothelial cells have begun to outline the cellular and molecular requirements underlying lumen formation. Although the lumen can be generated through diverse mechanisms, the coordinated participation of multiple conserved molecules including transcription factors, small GTPases, and adhesion and polarity proteins remains a fundamental principle, leading us closer to a more thorough understanding of this complex event.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Organogênese , Animais , Polaridade Celular , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo
4.
PLoS One ; 10(2): e0116086, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705891

RESUMO

During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1. The emergence of vascular lumens is characterized by elongation of endothelial cell shape, reorganization of junctions away from the cord center to the periphery of the vessel, and onset of Claudin-5 expression within tight junctions. Furthermore, unlike most vertebrate vessels that exhibit specialized apical and basal domains, we show that early Xenopus vessels are not polarized. Moreover, we demonstrate that in embryos depleted of the extracellular matrix factor Epidermal Growth Factor-Like Domain 7 (EGFL7), an evolutionarily conserved factor associated with vertebrate vessel development, vascular lumens fail to form. While Claudin-5 localizes to endothelial tight junctions of EGFL7-depleted embryos in a timely manner, endothelial cells of the aorta and veins fail to undergo appropriate cell shape changes or clear junctions from the cell-cell contact. Taken together, we demonstrate for the first time the mechanisms by which lumens are generated within the major vessels in Xenopus and implicate EGFL7 in modulating cell shape and cell-cell junctions to drive proper lumen morphogenesis.


Assuntos
Embrião não Mamífero/metabolismo , Endotélio Vascular/embriologia , Proteínas da Matriz Extracelular/metabolismo , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Forma Celular/fisiologia , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Junções Íntimas/metabolismo , Xenopus laevis , Proteína da Zônula de Oclusão-1/metabolismo
5.
Small GTPases ; 4(4): 231-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24150064

RESUMO

Vertebrate development depends on the formation of a closed circulatory loop consisting of intricate networks of veins, arteries, and lymphatic vessels. The coordinated participation of multiple molecules including growth factors, transcription factors, extracellular matrix proteins, and regulators of signaling such as small GTPases is essential for eliciting the desired cellular behaviors associated with vascular assembly and morphogenesis. We have recently demonstrated that a novel transcriptional pathway involving activation of the Epidermal Growth Factor-like Domain 7 (Egfl7) gene by the transcription factor CASTOR (CASZ1) is required for blood vessel assembly and lumen morphogenesis. Furthermore, this transcriptional network promotes RhoA expression and subsequent GTPase activity linking transcriptional regulation of endothelial gene expression to direct physiological outputs associated with Rho GTPase signaling, i.e., cell adhesion and cytoskeletal dynamics. Here we will discuss our studies with respect to our current understanding of the mechanisms underlying regulation of RhoA transcription, protein synthesis, and activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Endotélio Vascular/citologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Feminino , Humanos
6.
Dev Cell ; 25(2): 132-43, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639441

RESUMO

The formation of the vascular system is essential for embryonic development and homeostasis. However, transcriptional control of this process is not fully understood. Here we report an evolutionarily conserved role for the transcription factor CASZ1 (CASTOR) in blood vessel assembly and morphogenesis. In the absence of CASZ1, Xenopus embryos fail to develop a branched and lumenized vascular system, and CASZ1-depleted human endothelial cells display dramatic alterations in adhesion, morphology, and sprouting. Mechanistically, we show that CASZ1 directly regulates Epidermal Growth Factor-Like Domain 7 (Egfl7). We further demonstrate that defects of CASZ1- or EGFL7-depleted cells are in part due to diminished RhoA expression and impaired focal adhesion localization. Moreover, these abnormal endothelial cell behaviors in CASZ1-depleted cells can be rescued by restoration of Egfl7. Collectively, these studies show that CASZ1 is required to directly regulate an EGFL7/RhoA-mediated pathway to promote vertebrate vascular development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Endotélio Vascular/citologia , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Família de Proteínas EGF , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Fatores de Crescimento Endotelial/genética , Endotélio Vascular/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Imunofluorescência , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas Imunoenzimáticas , Dados de Sequência Molecular , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA