Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 128(3): 363-382, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301355

RESUMO

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Assuntos
Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grau de Desobstrução Vascular
2.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982947

RESUMO

Inhaled nitric oxide (iNO) is a therapy used in neonates with pulmonary hypertension. Some evidence of its neuroprotective properties has been reported in both mature and immature brains subjected to injury. NO is a key mediator of the VEGF pathway, and angiogenesis may be involved in the reduced vulnerability to injury of white matter and the cortex conferred by iNO. Here, we report the effect of iNO on angiogenesis in the developing brain and its potential effectors. We found that iNO promotes angiogenesis in the developing white matter and cortex during a critical window in P14 rat pups. This shift in the developmental program of brain angiogenesis was not related to a regulation of NO synthases by exogenous NO exposure, nor the VEGF pathway or other angiogenic factors. The effects of iNO on brain angiogenesis were found to be mimicked by circulating nitrate/nitrite, suggesting that these carriers may play a role in transporting NO to the brain. Finally, our data show that the soluble guanylate cyclase/cGMP signaling pathway is likely to be involved in the pro-angiogenetic effect of iNO through thrombospondin-1, a glycoprotein of the extracellular matrix, inhibiting soluble guanylate cyclase through CD42 and CD36. In conclusion, this study provides new insights into the biological basis of the effect of iNO in the developing brain.


Assuntos
Óxido Nítrico , Roedores , Animais , Ratos , Óxido Nítrico/metabolismo , Animais Recém-Nascidos , Roedores/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Encéfalo/metabolismo , Administração por Inalação
3.
Curr Issues Mol Biol ; 43(1): 301-312, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200155

RESUMO

The poly(ADP-ribose) polymerase inhibitor PJ34 has recently been reported to increase cerebral blood flow, via the endothelial NO synthase, in the naive mouse brain throughout life. We addressed here the benefits of PJ34 after neonatal ischemia on hemodynamics and components of the neurovascular unit including the blood-brain barrier (BBB), microglia, and astrocytes. Nine-day-old mice were subjected to permanent MCA occlusion (pMCAo), and treated with either PBS or PJ34 (10 mg/kg). Mean blood-flow velocities (mBFV) were measured in both internal carotid arteries (ICA) and basilar trunk (BT) using Doppler-ultrasonography. BBB opening was assessed through somatostatin-receptor type-2 internalization and immunohistochemistry at 24 and 48 h. Lesion areas were measured 8 days after ischemia. In PBS-treated mice, pMCAo involved a drop in mBFV in the left ICA (p < 0.001 vs. basal), whereas mBFV remained stable in both right ICA and BT. PJ34 prevented this drop in the left ICA (NS vs. basal) and increased mBFV in the right ICA (p = 0.0038 vs. basal). No modification was observed in the BT. In contrast to PBS, BBB disruption extent and astrocyte demise were reduced in PJ34 mice only in the rostral brain at 48 h and 8 days post-pMCAo, respectively. Accordingly, 8 days after pMCAo, affected areas were reduced in the rostral brain (Bregma +0.86 and +0.14 mm), whereas total tissue loss was not reduced after PJ34 (4.0 ± 3.1%) vs. PBS (5.8 ± 3.4%). These results show that PJ34 reduced BBB permeability, astrocyte demise, and tissue loss (particularly in the rostral territories), suggesting that collateral supply mainly proceeds from the anterior ICA's branches in the ischemic neonatal mouse brain.


Assuntos
Encéfalo/efeitos dos fármacos , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica , Encéfalo/metabolismo , Isquemia Encefálica/patologia , Artéria Carótida Interna/patologia , Feminino , Hemodinâmica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Permeabilidade , Fenótipo , Acidente Vascular Cerebral/fisiopatologia , Ultrassonografia Doppler
4.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911782

RESUMO

The poly(ADP-ribose) polymerase (PARP) inhibitor PJ34 has been reported to improve endothelial dysfunction in the peripheral system. We addressed the role of PJ34 on the vascular tone and vasoreactivity during development in the mouse brain. Blood flows were measured in the basilar trunk using ultrasonography. Cerebral vasoreactivity or vasodilation reserve was estimated as a percentage increase in mean blood flow velocities (mBFV) recorded under normoxia-hypercapnia in control and after PJ34 administration. Non-selective and selective eNOS and nNOS inhibitors were used to evaluate the role of NO-pathway into the hemodynamic effects of PJ34. PJ34 increased mBFVs from 15.8 ± 1.6 to 19.1 ± 1.9 cm/s (p = 0.0043) in neonatal, from 14.6 ± 1.4 to 16.1 ± 0.9 cm/s (p = 0.0049) in adult, and from 15.7 ± 1.7 to 17.5 ± 2.0 cm/s (p = 0.0024) in aged mice 48 h after administration. These PJ34 values were similar to those measured in age-matched control mice under normoxia-hypercapnia. This recruitment was mediated through the activation of constitutive NO synthases in both the neonatal (38.2 ± 6.7 nmol/min/mg protein) and adult (31.5 ± 4.4 nmol/min/mg protein) brain, as compared to age-matched control brain (6.9 ± 0.4 and 6.3 ± 0.7 nmol/min/mg protein), respectively. In addition, quite selective eNOS inhibitor was able to inhibit the recruitment. PJ34 by itself is able to increase cerebral blood flow through the NO-pathway activation at least over 48 h after a single administration.


Assuntos
Óxido Nítrico/metabolismo , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Vasodilatadores/metabolismo , Vasodilatadores/farmacologia
5.
Glia ; 67(2): 345-359, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30506969

RESUMO

Prematurity and fetal growth restriction (FGR) are frequent conditions associated with adverse neurocognitive outcomes. We have previously identified early deregulation of genes controlling neuroinflammation as a putative mechanism linking FGR and abnormal trajectory of the developing brain. While the oxytocin system was also found to be impaired following adverse perinatal events, its role in the modulation of neuroinflammation in the developing brain is still unknown. We used a double-hit rat model of perinatal brain injury induced by gestational low protein diet (LPD) and potentiated by postnatal injections of subliminal doses of interleukin-1ß (IL1ß) and a zebrafish model of neuroinflammation. Effects of the treatment with carbetocin, a selective, long lasting, and brain diffusible oxytocin receptor agonist, have been assessed using a combination of histological, molecular, and functional tools in vivo and in vitro. In the double-hit model, white matter inflammation, deficient myelination, and behavioral deficits have been observed and the oxytocin system was impaired. Early postnatal supplementation with carbetocin alleviated microglial activation at both transcriptional and cellular levels and provided long-term neuroprotection. The central anti-inflammatory effects of carbetocin have been shown in vivo in rat pups and in a zebrafish model of early-life neuroinflammation and reproduced in vitro on stimulated sorted primary microglial cell cultures from rats subjected to LPD. Carbetocin treatment was associated with beneficial effects on myelination, long-term intrinsic brain connectivity and behavior. Targeting oxytocin signaling in the developing brain may be an effective approach to prevent neuroinflammation - induced brain damage of perinatal origin.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Encéfalo/patologia , Microglia/efeitos dos fármacos , Receptores de Ocitocina/metabolismo , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Células Cultivadas , Biologia Computacional , Dieta com Restrição de Proteínas/efeitos adversos , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucina-1beta , Lipopolissacarídeos/toxicidade , Ocitócicos/uso terapêutico , Ocitocina/análogos & derivados , Ocitocina/uso terapêutico , Fragmentos de Peptídeos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , RNA Mensageiro/metabolismo , Peixe-Zebra
6.
Brain Behav Immun ; 80: 315-327, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30953775

RESUMO

Stroke is currently the second leading cause of death in industrialized countries and the second cause of dementia after Alzheimer's disease. Diabetes is an independent risk factor for stroke that exacerbates the severity of lesions, disability and cognitive decline. There is increasing evidence that sustained brain inflammation may account for this long-term prejudicial outcome in diabetic patients in particular. We sought to demonstrate that experimental permanent middle cerebral artery occlusion (pMCAo) in the diabetic mouse aggravates stroke, induces cognitive decline, and is associated with exacerbated brain inflammation, and that these effects can be alleviated and/or prevented by the immunomodulator, glatiramer acetate (GA). Male diabetic C57Bl6 mice (streptozotocin IP) subjected to permanent middle cerebral artery occlusion (pMCAo), were treated by the immunomodulator, GA (Copaxone®) (1 mg/kg daily, sc) until 3 or 7 days post stroke. Infarct volume, brain pro- and anti-inflammatory mediators, microglial/macrophage density, and neurogenesis were monitored during the first week post stroke. Neurological sensorimotor deficit, spatial memory and brain deposits of Aß40 and Aß42 were assessed until six weeks post stroke. In diabetic mice with pMCAo, proinflammatory mediators (IL-1ß, MCP1, TNFα and CD68) were significantly higher than in non-diabetic mice. In GA-treated mice, the infarct volume was reduced by 30% at D3 and by 40% at D7 post stroke (P < 0.05), sensorimotor recovery was accelerated as early as D3, and long-term memory loss was prevented. Moreover, proinflammatory mediators significantly decreased between D3 (COX2) and D7 (CD32, TNFα, IL-1ß), and neurogenesis was significantly increased at D7. Moreover, GA abrogates the accumulation of insoluble Aß40. This work is the first one to evidence that the immunomodulatory drug GA reduces infarct volume and proinflammatory mediators, enhances early neurogenesis, accelerates sensorimotor recovery, and prevents long-term memory loss in diabetic mice with pMCAo.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Infarto Encefálico/imunologia , Complicações do Diabetes , Acetato de Glatiramer/administração & dosagem , Transtornos da Memória/imunologia , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Infarto Encefálico/complicações , Infarto Encefálico/prevenção & controle , Complicações do Diabetes/imunologia , Encefalite/etiologia , Encefalite/imunologia , Mediadores da Inflamação/imunologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Acidente Vascular Cerebral/imunologia
7.
Int J Mol Sci ; 20(15)2019 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-31382688

RESUMO

We recently reported that neonatal ischemia induces microglia/macrophage activation three days post-ischemia. We also found that female mice sustained smaller infarcts than males three months post-ischemia. The objective of our current study was to examine whether differential acute neuroinflammatory response and infiltrated immune cells occurs between male and females after three days post-ischemia. Permanent middle cerebral artery occlusion was induced in male and female postnatal 9-day-old (P9) mice, and mice were sacrificed three days after ischemia. Brains were analyzed for mRNA transcription after microglia magnetic cell sorting to evaluate M1 and M2 markers. FACS analysis was performed to assess myeloid infiltration and microglial expression of CX3 chemokine receptor 1 (CX3CR1). Inflammatory cytokine expression and microglia/macrophage activation were analyzed via in situ hybridization combined with immunofluorescence techniques. Lesion volume and cell death were measured. An increase in microglia/macrophages occurred in male versus female mice. The cells exhibited amoeboid morphology, and TNFα and ptgs2 (Cox-2) genes were more expressed in males. More myeloid cell infiltration was found in male versus female brains. However, we did not observe sex-dependent differences in the injured volume or cell death density. Our data show that sex differences in the acute microglial and immune responses to neonatal ischemia are likely both gene- and region-specific.


Assuntos
Isquemia Encefálica/imunologia , Imunidade Inata/genética , Inflamação/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Animais Recém-Nascidos/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média , Inflamação/genética , Inflamação/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Caracteres Sexuais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
8.
Brain Behav Immun ; 73: 375-389, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29852289

RESUMO

Neonatal acute ischemic stroke is a cause of neonatal brain injury that occurs more frequently in males, resulting in associated neurobehavioral disorders. The bases for these sex differences are poorly understood but might include the number, morphology and activation of microglia in the developing brain when subjected to stroke. Interestingly, poly (ADP-ribose) polymerase (PARP) inhibition preferentially protects males against neonatal ischemia. This study aims to examine the effects of PJ34, a PARP inhibitor, on microglial phenotypes at 3 and 8 days and on neurobehavioral disorders in adulthood for both male and female P9 mice subjected to permanent middle cerebral artery occlusion (pMCAo). PJ34 significantly reduced the lesion size by 78% and reduced the density of CX3CR1gfp-labeled microglial cells by 46% when examined 3 days after pMCAo in male but not in female mice. Eight days after pMCAo, the number of Iba1+/Cox-2+ cells did not differ between male and female mice in the cortical peri-infarct region. In the amygdala, Iba1+/Cox-2+ (M1-like) cell numbers were significantly decreased in PJ34-treated males but not in females. Conversely, Iba1+/Arg-1+ (M2-like) and Arg-1+/Cox-2+ (Mtransitional) cell numbers were significantly increased in PJ34-treated females. Regarding neurobehavioral disorders during adulthood, pMCAo induced a motor coordination deficit and a spatial learning deficit in female mice only. PJ34 prevented MBP fibers, motor coordination and learning disorders during adulthood in female mice. Our data show significant sex differences in the effects of PARP inhibition on microglia phenotypes following neonatal ischemia, associated with improved behavior and myelination during adulthood in females only. Our findings suggest that modulating microglial phenotypes may play key roles in behavior disorders and white matter injury following neonatal stroke.


Assuntos
Isquemia Encefálica/patologia , Microglia/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/complicações , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenantrenos/metabolismo , Fenantrenos/farmacologia , Fenótipo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fatores Sexuais , Acidente Vascular Cerebral/patologia
9.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274381

RESUMO

While arterial reflow after a stroke represents an important challenge for better outcomes, it is also very important that sudden recanalization does not produce local oxidative and nitrogen species, deleterious for the brain and more particularly the immature brain. Our objective was to determine whether a supply in prostaglandin (Pg) E1 (Alprostadil), via its action on arterial pressure, might progressively improve cerebral reperfusion in a neonatal stroke model. Arterial blood flow was measured using ultrasonography. Rate-limiting and Pg terminal synthesizing enzymes were evaluated using reverse-transcriptase polymerase chain reaction. Our data suggests that a supply in PgE1 might delay and improve the ipsilateral reperfusion by decreasing thromboxane A synthase-1 gene, the density of reactive astrocytes and lesion volume.


Assuntos
Alprostadil/uso terapêutico , Circulação Colateral/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Alprostadil/farmacologia , Animais , Animais Recém-Nascidos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Ratos Wistar , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/enzimologia , Tromboxano-A Sintase/genética , Tromboxano-A Sintase/metabolismo
10.
Neurobiol Dis ; 99: 145-153, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28042096

RESUMO

Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.


Assuntos
Anticonvulsivantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Animais Recém-Nascidos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Levetiracetam , Compostos de Lítio , Masculino , Fenobarbital/farmacologia , Pilocarpina , Piracetam/análogos & derivados , Piracetam/farmacologia , Distribuição Aleatória , Ratos Wistar , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
11.
Int J Mol Sci ; 19(1)2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29278365

RESUMO

Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared to females with similar brain injury. As a result, the design of pre-clinical experiments considering sex as an important variable was supported and investigated because neuroprotective strategies to reduce brain injury demonstrated sexual dimorphism. While the mechanisms underlining these differences between boys and girls remain unclear, several biological processes are recognized to play a key role in long-term neurodevelopmental outcomes: gonadal hormones across developmental stages, vulnerability to oxidative stress, modulation of cell death, and regulation of microglial activation. This review summarizes the current evidence for sex differences in neonatal hypoxic-ischemic and/or ischemic brain injury, considering the major pathways known to be involved in cognitive and behavioral deficits associated with damages of the developing brain.


Assuntos
Encéfalo/patologia , Hipóxia-Isquemia Encefálica/epidemiologia , Hipóxia-Isquemia Encefálica/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Morte Celular , Modelos Animais de Doenças , Feminino , Hormônios Gonadais/metabolismo , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Recém-Nascido , Masculino , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo , Caracteres Sexuais , Fatores Sexuais
12.
Glia ; 64(12): 2306-2320, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27687291

RESUMO

Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Retardo do Crescimento Fetal/fisiopatologia , Microglia/metabolismo , Oligodendroglia/metabolismo , Transcriptoma/fisiologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/metabolismo , Antígenos CD/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/diagnóstico por imagem , Citocinas/metabolismo , Feminino , Expressão Gênica/fisiologia , Lipopolissacarídeos/farmacologia , Proteína Básica da Mielina/metabolismo , Vias Neurais/diagnóstico por imagem , Vias Neurais/efeitos dos fármacos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Gravidez , Proteoglicanas/metabolismo , Ratos , Ratos Sprague-Dawley
13.
Stroke ; 47(12): 3048-3052, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27834752

RESUMO

BACKGROUND AND PURPOSE: We previously showed that the selective neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) increases cerebral microcirculation in a juvenile ischemic rat model. We address the roles of cyclooxygenase (COX)-elaborated prostaglandins in collateral recruitment and blood supply. METHODS: Fourteen-day-old rats were subjected to ischemia-reperfusion and treated with either PBS or 7-NI (25 mg/kg) at the reperfusion onset. Six-keto-prostaglandin F1α was measured using ELISA. COX-1 and COX-2 and prostaglandin terminal synthesizing enzymes were evaluated using reverse-transcriptase polymerase chain reaction and immunofluorescence. Microvascular blood flow indexes (artery diameter and capillaries number) were measured using sidestream dark-field videomicroscopy in PBS- and 7-NI-treated ischemic rats in the absence or presence of the COX-2 inhibitor NS-398 (5 mg/kg). Cell death was measured with the TUNEL (terminal transferase dUTP nick end labeling) assay and cleaved-caspase-3 immunostaining. RESULTS: Six-keto-prostaglandin F1α and COX-2, associated with a prostaglandin E synthase, were significantly increased in PBS- and 7-NI-treated animals 15 minutes and 1 hour after ischemia-reperfusion, respectively. In contrast and as compared with PBS, 7-NI significantly decreased prostacyclin synthase and cytosolic prostaglandins E synthase mRNA. Selective COX-2 inhibition significantly decreased blood flow indexes and significantly reversed the effects of 7-NI, including the number of TUNEL+- and cleaved-caspase-3+-nuclei. CONCLUSIONS: These results show that the juvenile rat brains mostly respond to ischemia by a COX-2-dependent prostaglandins production and suggest that the transcriptional responses observed under 7-NI facilitate and reorient COX-2-dependent prostaglandins production.


Assuntos
6-Cetoprostaglandina F1 alfa/metabolismo , Circulação Cerebrovascular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Microcirculação , Prostaglandina-E Sintases/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Modelos Animais de Doenças , Ratos
14.
J Neuroinflammation ; 13(1): 95, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27126393

RESUMO

BACKGROUND: Perinatal ischemic stroke is the most frequent form of cerebral infarction in neonates; however, evidence-based treatments are currently lacking. We have previously demonstrated a beneficial effect of sildenafil citrate, a PDE-5 inhibitor, on stroke lesion size in neonatal rat pups. The present study investigated the effects of sildenafil in a neonatal mouse stroke model on (1) hemodynamic changes and (2) regulation of astrocyte/microglia-mediated neuroinflammation. METHODS: Ischemia was induced in C57Bl/6 mice on postnatal (P) day 9 by permanent middle cerebral artery occlusion (pMCAo), and followed by either PBS or sildenafil intraperitoneal (i.p.) injections. Blood flow (BF) velocities were measured by ultrasound imaging with sequential Doppler recordings and laser speckle contrast imaging. Animals were euthanized, and brain tissues were obtained at 72 h or 8 days after pMCAo. Expression of M1- and M2-like microglia/macrophage markers were analyzed. RESULTS: Although sildenafil (10 mg/kg) treatment potently increased cGMP concentrations, it did not influence early collateral recruitment nor did it reduce mean infarct volumes 72 h after pMCAo. Nevertheless, it provided a significant dose-dependent reduction of mean lesion extent 8 days after pMCAo. Suggesting a mechanism involving modulation of the inflammatory response, sildenafil significantly decreased microglial density at 72 h and 8 days after pMCAo. Gene expression profiles indicated that sildenafil treatment also modulates M1- (ptgs2, CD32 and CD86) and M2-like (CD206, Arg-1 and Lgals3) microglia/macrophages in the late phase after pMCAo. Accordingly, the number of COX-2(+) microglia/macrophages significantly increased in the penumbra at 72 h after pMCAo but was significantly decreased 8 days after ischemia in sildenafil-treated animals. CONCLUSIONS: Our findings argue that anti-inflammatory effects of sildenafil may provide protection against lesion extension in the late phase after pMCAo in neonatal mice. We propose that sildenafil treatment could represent a potential strategy for neonatal ischemic stroke treatment/recovery.


Assuntos
Isquemia Encefálica/patologia , Microglia/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Citrato de Sildenafila/farmacologia , Animais , Animais Recém-Nascidos , Isquemia Encefálica/enzimologia , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Reação em Cadeia da Polimerase
15.
Dev Neurosci ; 37(4-5): 417-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791196

RESUMO

Several lines of evidence demonstrate that inhaled nitric oxide (iNO) not only acts locally on the pulmonary vasculature but also has remote effects on the mature and developing brain under basal or pathological conditions by modulating cerebral blood flow and microvascularization, white matter maturation, inflammation, and subsequent brain repair. Previously, consistent studies demonstrated that increased levels of guanosine 3',5' cyclic monophosphate (cGMP), the main effector of biological effect induced by nitric oxide (NO), significantly augment proliferation and neuronal differentiation of adult neural progenitor cells (NPCs). In the present study, we ask the question whether iNO could promote the proliferation of NPCs in the uninjured developing brain. We first reported that iNO exposure at a concentration of 20 ppm during the first 7 days of life was associated with a significant but transient elevation of brain cGMP concentration 2 h after the onset of iNO exposure and a subsequent increase in myelin content of the developing white matter at postnatal day (P) 10. Using BrDu labelling and colabelling with specific cell-type markers we found that iNO exposure of rat pups results in an increased NPC proliferation in several layers of the subventricular zone (SVZ) at both early (30 h) and late (P7) time points. These proliferating NPCs were found to be sustainably viable and subsequently differentiated into oligodendroglial cells in the developing white matter and cortex. We also found that NG2 immunoreactivity around vessel walls, labeling pericyte cells, was increased in NO-exposed rat pups in the periventricular SVZ. In conclusion, iNO appears to act on oligodendrocyte progenitor cells, leading to increased density of mature oligodendrocytes and myelin content in the immature rat brain.


Assuntos
Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurotransmissores/farmacologia , Óxido Nítrico/farmacologia , Oligodendroglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Masculino , Neurotransmissores/administração & dosagem , Óxido Nítrico/administração & dosagem , Ratos , Ratos Sprague-Dawley
16.
Pediatr Res ; 77(4): 563-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25580736

RESUMO

BACKGROUND: Fetal growth restriction is the second leading cause of perinatal morbidity and mortality, and neonates with intrauterine growth retardation (IUGR) have increased neurocognitive and neuropsychiatric morbidity. These neurocognitive impairments are mainly related to injury of the developing brain associated with IUGR. Growing evidence from preclinical models of brain injury in both adult and neonatal rodents supports the view that nitric oxide can promote neuroprotection. METHODS: In a model of IUGR induced by protracted gestational hypoxia leading to diffuse white matter injury, we subjected neonatal rats to low dose (5 ppm) but long-lasting (7 d) exposure to inhaled NO (iNO). We used a combination of techniques, including immunohistochemistry, quantitative PCR, and cognitive assessment, to assess neuroprotection. RESULTS: Antenatal hypoxia-induced IUGR was associated with severe neuroinflammation and delayed myelination. iNO exposure during the first postnatal week significantly attenuated cell death and microglial activation, enhanced oligodendroglial proliferation and finally improved myelination. Remarkably, iNO was associated with the specific upregulation of P27kip1, which initiates oligodendrocytic differentiation. Finally, iNO counteracted the deleterious effects of hypoxia on learning abilities. CONCLUSION: This study provides new evidence that iNO could be effective in preventing brain damage and/or enhancing repair of the developing brain.


Assuntos
Administração por Inalação , Fármacos Neuroprotetores/química , Óxido Nítrico/administração & dosagem , Substância Branca/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Axônios/patologia , Comportamento Animal , Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal , Hipóxia , Imuno-Histoquímica , Aprendizagem , Bainha de Mielina/química , Oligodendroglia/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Substância Branca/patologia
18.
Stroke ; 45(3): 850-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24473179

RESUMO

BACKGROUND AND PURPOSE: The best conceivable treatment for hypoxia-ischemia (HI) is the restoration of blood flow to the hypoxic-ischemic region(s). Our objective was to examine whether boosting NO-cGMP signaling using sildenafil citrate, a phosphodiesterase-type 5 inhibitor, could modify cerebral blood flow and reduce lesions in the developing brain. METHODS: HI was induced in P7 Sprague-Dawley rats by unilateral carotid artery occlusion and hypoxia, and followed by either PBS or sildenafil. Blood-flow velocities were measured by ultrasound imaging with sequential Doppler recordings to evaluate collateral recruitment. Cell death, blood-brain barrier integrity, and glial activation were analyzed by immunohistochemistry. Motor behavior was evaluated using an open-field device adapted to neonatal animals. RESULTS: Sildenafil citrate (10 mg/kg) induced collateral patency, reduced terminal dUTP nick-end labeling-positive cells, reactive astrogliosis, and macrophage/microglial activation at 72 hours and 7 days post-HI. Sildenafil also reduced the number of terminal dUTP nick-end labeling-positive endothelial cells within lesion site. Seven days after HI and sildenafil treatment, tissue loss was significantly reduced, and animals recovered motor coordination. CONCLUSIONS: Our findings strongly indicate that sildenafil citrate treatment, associated with a significant increase in cerebral blood flow, reduces HI damage and improves motor locomotion in neonatal rats. Sildenafil may represent an interesting therapeutic strategy for neonatal neuroprotection.


Assuntos
Animais Recém-Nascidos/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Animais , Gasometria , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Morte Celular/efeitos dos fármacos , GMP Cíclico/fisiologia , Lateralidade Funcional/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/psicologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Microcirculação/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Óxido Nítrico/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Purinas/farmacologia , Ratos , Citrato de Sildenafila
19.
Ann Neurol ; 73(4): 442-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23495069

RESUMO

Nitric oxide (NO) is a powerful vasodilator, involved in both physiological functions and pathophysiological alterations of various regulatory processes, for example, the maintenance of vascular tone and inflammation. The recently demonstrated impact of exogenous NO on the central nervous system extends its role under normal and pathological conditions. At times neuroprotective, at times neurotoxic, NO is capable of different effects depending upon the extent of cerebral damage, the cellular redox state, and the spatiotemporal coordinates and concentration at which it is synthesized. This review provides new insights into the short- and long-term effects of endogenous and exogenous NO in brain injury.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Óxido Nítrico/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Humanos , Óxido Nítrico Sintase Tipo I/metabolismo
20.
FASEB J ; 26(6): 2667-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22389441

RESUMO

Spatial synthesis of N-acyl-phosphatidylethanolamines (NAPEs) and N-acylethanolamines (NAEs) during ischemia-reperfusion in neonatal rats has been investigated and compared to the spatial degradation of other phospholipids. Ischemia was induced in anesthetized Wistar P7 rat pups by left middle cerebral artery electrocoagulation combined with a transient and concomitant occlusion of both common carotid arteries. Pups were sacrificed after 24 and 48 h. Sham-treated animals were sacrificed after 48 h. The frozen brains were sliced and subjected to desorption electrospray ionization imaging mass spectrometry. There was a remarkable increase in the levels of many species of NAPEs in the whole injured area at both time points, and a clear but minor increase in selected NAEs. In the ischemic area, the sodium adducts of phosphatidylcholine and of lyso-phosphatidylcholine accumulated and the potassium adduct of phosphatidylcholine disappeared, indicating breakdown of the Na(+)/K(+) pump. Free fatty acids, e.g., arachidonic and docosahexaenoic acids, tended to be more abundant in the periphery than in the center of the ischemic area and showed different spatial distribution. NAPEs are synthesized in the whole ischemic area where the cells seem to be dead and other phospholipids are degraded. Free fatty acids can be found in the periphery of the ischemic area.


Assuntos
Química Encefálica , Isquemia Encefálica/metabolismo , Lipídeos/análise , Fosfatidiletanolaminas/análise , Traumatismo por Reperfusão/metabolismo , Animais , Animais Recém-Nascidos , Etanolaminas/análise , Ácidos Graxos não Esterificados/metabolismo , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA