Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885696

RESUMO

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.

2.
Proc Natl Acad Sci U S A ; 119(16): e2123299119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412884

RESUMO

Wheat is a widely grown food crop that suffers major yield losses due to attack by pests and pathogens. A better understanding of biotic stress responses in wheat is thus of major importance. The recently assembled bread wheat genome coupled with extensive transcriptomic resources provides unprecedented new opportunities to investigate responses to pathogen challenge. Here, we analyze gene coexpression networks to identify modules showing consistent induction in response to pathogen exposure. Within the top pathogen-induced modules, we identify multiple clusters of physically adjacent genes that correspond to six pathogen-induced biosynthetic pathways that share a common regulatory network. Functional analysis reveals that these pathways, all of which are encoded by biosynthetic gene clusters, produce various different classes of compounds­namely, flavonoids, diterpenes, and triterpenes, including the defense-related compound ellarinacin. Through comparative genomics, we also identify associations with the known rice phytoalexins momilactones, as well as with a defense-related gene cluster in the grass model plant Brachypodium distachyon. Our results significantly advance the understanding of chemical defenses in wheat and open up avenues for enhancing disease resistance in this agriculturally important crop. They also exemplify the power of transcriptional networks to discover the biosynthesis of chemical defenses in plants with large, complex genomes.


Assuntos
Vias Biossintéticas , Interações Hospedeiro-Patógeno , Doenças das Plantas , Triticum , Vias Biossintéticas/genética , Pão , Resistência à Doença/genética , Família Multigênica/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/microbiologia
3.
Fungal Genet Biol ; 79: 33-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26092788

RESUMO

This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB.


Assuntos
Ascomicetos/patogenicidade , Cruzamento/métodos , Resistência à Doença , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia , Ascomicetos/imunologia , Genes de Plantas , Herança Multifatorial , Característica Quantitativa Herdável
4.
J Exp Bot ; 65(4): 1025-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399175

RESUMO

Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, is a serious, recently emerged disease of barley in Europe and other temperate regions. This study investigated the trade off between strong resistance to powdery mildew conferred by mlo mutant alleles and increased susceptibility to RLS. In field trials and seedling tests, the presence of mlo alleles increased severity of RLS. Genetic analysis of a doubled-haploid population identified one quantitative trait locus for susceptibility to RLS, colocalizing with the mlo-11 allele for mildew resistance. The effect of mlo-11 on RLS severity was environmentally sensitive. Analysis of near-isogenic lines of different mlo mutations in various genetic backgrounds confirmed that mlo alleles increased RLS severity in seedlings and adult plants. For mlo resistance to mildew to be fully effective, the genes ROR1 and ROR2 are required. RLS symptoms were significantly reduced on mlo-5 ror double mutants but fungal DNA levels remained as high as in mlo-5 single mutants, implying that ror alleles modify the transition of the fungus from endophytism to necrotrophy. These results indicate that the widespread use of mlo resistance to control mildew may have inadvertently stimulated the emergence of RLS as a major disease of barley.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/genética , Hordeum/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Europa (Continente) , Hordeum/imunologia , Hordeum/microbiologia , Hordeum/fisiologia , Mutação , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Plântula/fisiologia
5.
Nat Commun ; 14(1): 6977, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914713

RESUMO

Isoflavones are a group of phenolic compounds mostly restricted to plants of the legume family, where they mediate important interactions with plant-associated microbes, including in defense from pathogens and in nodulation. Their well-studied health promoting attributes have made them a prime target for metabolic engineering, both for bioproduction of isoflavones as high-value molecules, and in biofortification of food crops. A key gene in their biosynthesis, isoflavone synthase, was identified in legumes over two decades ago, but little is known about formation of isoflavones outside of this family. Here we identify a specialized wheat-specific isoflavone synthase, TaCYP71F53, which catalyzes a different reaction from the leguminous isoflavone synthases, thus revealing an alternative path to isoflavonoid biosynthesis and providing a non-transgenic route for engineering isoflavone production in wheat. TaCYP71F53 forms part of a biosynthetic gene cluster that produces a naringenin-derived O-methylated isoflavone, 5-hydroxy-2',4',7-trimethoxyisoflavone, triticein. Pathogen-induced production and in vitro antimicrobial activity of triticein suggest a defense-related role for this molecule in wheat. Genomic and metabolic analyses of wheat ancestral grasses further show that the triticein gene cluster was introduced into domesticated emmer wheat through natural hybridization ~9000 years ago, and encodes a pathogen-responsive metabolic pathway that is conserved in modern bread wheat varieties.


Assuntos
Fabaceae , Isoflavonas , Isoflavonas/metabolismo , Fitoalexinas , Triticum/genética , Triticum/metabolismo , Fabaceae/metabolismo , Metabolismo Secundário
6.
Theor Appl Genet ; 115(8): 1127-36, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17874062

RESUMO

The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an excellent model to study gene-for-gene interactions and plant disease resistance gene evolution. Most Cf genes were introgressed into cultivated tomato (Solanum lycopersicum) from wild relatives such as S. pimpinellifolium and novel Cf-ECP genes were recently identified in this species. Our objective is to isolate Cf-ECP1, Cf-ECP2, Cf-ECP4 and Cf-ECP5 to increase our understanding of Cf gene evolution, and the molecular basis for recognition specificity in Cf proteins. The map locations of Cf-ECP2 and Cf-ECP5 have been reported previously and we report here that Cf-ECP1 and Cf-ECP4 map to a different locus on the short arm of chromosome 1. The analysis of selected recombinants and allelism tests showed both genes are located at Milky Way together with Cf-9 and Cf-4. Our results emphasise the importance of this locus in generating novel Cf genes for resistance to C. fulvum. Candidate genes for Cf-ECP1 and Cf-ECP4 were also identified by DNA gel blot analysis of bulked segregant pools. In addition, we generated functional cassettes for expression of the C. fulvum ECP1, ECP2, ECP4 and ECP5 proteins using recombinant Potato Virus X, and three ECPs were also expressed in stable transformed plants. Using marker-assisted selection we have also identified recombinants containing Cf-ECP1, Cf-ECP2, Cf-ECP4 or Cf-ECP5 in cis with a linked T-DNA carrying the non-autonomous Zea mays transposon Dissociation. Using these resources it should now be possible to isolate all four Cf-ECPs using transposon tagging, or a candidate gene strategy.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidade , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Vetores Genéticos , Dados de Sequência Molecular , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potexvirus , Solanum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA