Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 101(2): 427-493, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730113

RESUMO

In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.


Assuntos
Acetilglucosamina/genética , Fenômenos Fisiológicos Celulares/genética , N-Acetilglucosaminiltransferases/genética , Processamento de Proteína Pós-Traducional/genética , Acetilglucosamina/metabolismo , Animais , Glicosilação , Humanos , N-Acetilglucosaminiltransferases/metabolismo
2.
Annu Rev Physiol ; 82: 79-101, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589825

RESUMO

On Earth, all life is exposed to dramatic changes in the environment over the course of the day; consequently, organisms have evolved strategies to both adapt to and anticipate these 24-h oscillations. As a result, time of day is a major regulator of mammalian physiology and processes, including transcription, signaling, metabolism, and muscle contraction, all of which oscillate over the course of the day. In particular, the heart is subject to wide fluctuations in energetic demand throughout the day as a result of waking, physical activity, and food intake patterns. Daily rhythms in cardiovascular function ensure that increased delivery of oxygen, nutrients, and endocrine factors to organs during the active period and the removal of metabolic by-products are in balance. Failure to maintain these physiologic rhythms invariably has pathologic consequences. This review highlights rhythms that underpin cardiac physiology. More specifically, we summarize the key aspects of cardiac physiology that oscillate over the course of the day and discuss potential mechanisms that regulate these 24-h rhythms.


Assuntos
Ritmo Circadiano/fisiologia , Coração/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares , Fenômenos Cronobiológicos , Humanos
3.
J Neurochem ; 165(5): 682-700, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129420

RESUMO

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.


Assuntos
Processamento de Proteína Pós-Traducional , Transdução de Sinais , Camundongos , Animais , Modelos Animais de Doenças , Sirolimo , Expressão Gênica
4.
Am J Physiol Heart Circ Physiol ; 325(4): H601-H616, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539459

RESUMO

The modification of serine and threonine amino acids of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates the activity, stability, function, and subcellular localization of proteins. Dysregulation of O-GlcNAc homeostasis is well established as a hallmark of various cardiac diseases, including cardiac hypertrophy, heart failure, complications associated with diabetes, and responses to acute injuries such as oxidative stress and ischemia-reperfusion. Given the limited availability of site-specific O-GlcNAc antibodies, studies of changes in O-GlcNAcylation in the heart frequently use pan-O-GlcNAc antibodies for semiquantitative evaluation of overall O-GlcNAc levels. However, there is a high degree of variability in many published cardiac O-GlcNAc blots. For example, many blots often have regions that lack O-GlcNAc positive staining of proteins either below 50 or above 100 kDa. In some O-GlcNAc blots, only a few protein bands are detected, while in others, intense bands around 75 kDa dominate the gel due to nonspecific IgM band staining, making it difficult to visualize less intense bands. Therefore, the goal of this study was to develop a modifiable protocol that optimizes O-GlcNAc positive banding of proteins in cardiac tissue extracts. We showed that O-GlcNAc blots using CTD110.6 antibody of proteins ranging from <30 to ∼450 kDa could be obtained while also limiting nonspecific staining. We also show that some myofilament proteins are recognized by the CTD110.6 antibody. Therefore, by protocol optimization using the widely available CTD110.6 antibody, we found that it is possible to obtain pan-O-GlcNAc blots of cardiac tissue, which minimizes common limitations associated with this technique.NEW & NOTEWORTHY The post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is recognized as mediating cardiac pathophysiology. However, there is considerable variability in the quality of O-GlcNAc immunoblots used to evaluate changes in cardiac O-GlcNAc levels. Here we show that with relatively minor changes to a commonly used protocol it is possible to minimize the intensity of nonspecific bands while also reproducibly generating O-GlcNAc immunoblots covering a range of molecular weights from <30 to ∼450 kDa.


Assuntos
Acetilglucosamina , Proteínas , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Proteínas/metabolismo , Coração , Anticorpos , Immunoblotting , Processamento de Proteína Pós-Traducional , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
5.
J Mol Cell Cardiol ; 157: 31-44, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33894212

RESUMO

Essentially all biological processes fluctuate over the course of the day, manifesting as time-of-day-dependent variations with regards to the way in which organ systems respond to normal behaviors. For example, basic, translational, and epidemiologic studies indicate that temporal partitioning of metabolic processes governs the fate of dietary nutrients, in a manner in which concentrating caloric intake towards the end of the day is detrimental to both cardiometabolic and cardiovascular parameters. Despite appreciation that branched chain amino acids impact risk for obesity, diabetes mellitus, and heart failure, it is currently unknown whether the time-of-day at which dietary BCAAs are consumed influence cardiometabolic/cardiovascular outcomes. Here, we report that feeding mice a BCAA-enriched meal at the end of the active period (i.e., last 4 h of the dark phase) rapidly increases cardiac protein synthesis and mass, as well as cardiomyocyte size; consumption of the same meal at the beginning of the active period (i.e., first 4 h of the dark phase) is without effect. This was associated with a greater BCAA-induced activation of mTOR signaling in the heart at the end of the active period; pharmacological inhibition of mTOR (through rapamycin) blocked BCAA-induced augmentation of cardiac mass and cardiomyocyte size. Moreover, genetic disruption of the cardiomyocyte circadian clock abolished time-of-day-dependent fluctuations in BCAA-responsiveness. Finally, we report that repetitive consumption of BCAA-enriched meals at the end of the active period accelerated adverse cardiac remodeling and contractile dysfunction in mice subjected to transverse aortic constriction. Thus, our data demonstrate that the timing of BCAA consumption has significant implications for cardiac health and disease.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Vigília , Fatores de Transcrição ARNTL/deficiência , Animais , Biomarcadores , Relógios Circadianos , Suscetibilidade a Doenças , Ingestão de Alimentos , Camundongos , Camundongos Knockout , Biossíntese de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Remodelação Ventricular/genética
6.
J Biol Chem ; 295(7): 2018-2033, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31915250

RESUMO

The hexosamine biosynthesis pathway (HBP) branches from glycolysis and forms UDP-GlcNAc, the moiety for O-linked ß-GlcNAc (O-GlcNAc) post-translational modifications. An inability to directly measure HBP flux has hindered our understanding of the factors regulating protein O-GlcNAcylation. Our goals in this study were to (i) validate a LC-MS method that assesses HBP flux as UDP-GlcNAc (13C)-molar percent enrichment (MPE) and concentration and (ii) determine whether glucose availability or workload regulate cardiac HBP flux. For (i), we perfused isolated murine working hearts with [U-13C6]glucosamine (1, 10, 50, or 100 µm), which bypasses the rate-limiting HBP enzyme. We observed a concentration-dependent increase in UDP-GlcNAc levels and MPE, with the latter reaching a plateau of 56.3 ± 2.9%. For (ii), we perfused isolated working hearts with [U-13C6]glucose (5.5 or 25 mm). Glycolytic efflux doubled with 25 mm [U-13C6]glucose; however, the calculated HBP flux was similar among the glucose concentrations at ∼2.5 nmol/g of heart protein/min, representing ∼0.003-0.006% of glycolysis. Reducing cardiac workload in beating and nonbeating Langendorff perfusions had no effect on the calculated HBP flux at ∼2.3 and 2.5 nmol/g of heart protein/min, respectively. To the best of our knowledge, this is the first direct measurement of glucose flux through the HBP in any organ. We anticipate that these methods will enable foundational analyses of the regulation of HBP flux and protein O-GlcNAcylation. Our results suggest that in the healthy ex vivo perfused heart, HBP flux does not respond to acute changes in glucose availability or cardiac workload.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional/genética , Animais , Vias Biossintéticas/genética , Glicólise/genética , Glicosilação , Coração/efeitos dos fármacos , Coração/fisiopatologia , Hexosaminas/biossíntese , Hexosaminas/genética , Humanos , Camundongos , Miocárdio/patologia
7.
Am J Physiol Cell Physiol ; 316(6): C862-C875, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865517

RESUMO

The attachment of O-linked ß-N-acetylglucosamine (O-GlcNAc) to the serine and threonine residues of proteins in distinct cellular compartments is increasingly recognized as an important mechanism regulating cellular function. Importantly, the O-GlcNAc modification of mitochondrial proteins has been identified as a potential mechanism to modulate metabolism under stress with both potentially beneficial and detrimental effects. This suggests that temporal and dose-dependent changes in O-GlcNAcylation may have different effects on mitochondrial function. In the current study, we found that acutely augmenting O-GlcNAc levels by inhibiting O-GlcNAcase with Thiamet-G for up to 6 h resulted in a time-dependent decrease in cellular bioenergetics and decreased mitochondrial complex I, II, and IV activities. Under these conditions, mitochondrial number was unchanged, whereas an increase in the protein levels of the subunits of several electron transport complex proteins was observed. However, the observed bioenergetic changes appeared not to be due to direct increased O-GlcNAc modification of complex subunit proteins. Increases in O-GlcNAc were also associated with an accumulation of mitochondrial ubiquitinated proteins; phosphatase and tensin homolog induced kinase 1 (PINK1) and p62 protein levels were also significantly increased. Interestingly, the increase in O-GlcNAc levels was associated with a decrease in the protein levels of the mitochondrial Lon protease homolog 1 (LonP1), which is known to target complex IV subunits and PINK1, in addition to other mitochondrial proteins. These data suggest that impaired bioenergetics associated with short-term increases in O-GlcNAc levels could be due to impaired, LonP1-dependent, mitochondrial complex protein turnover.


Assuntos
Proteases Dependentes de ATP/metabolismo , Acetilglucosamina/metabolismo , Regulação para Baixo/fisiologia , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Proteases Dependentes de ATP/antagonistas & inibidores , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Proteínas Mitocondriais/antagonistas & inibidores
8.
Lab Invest ; 99(2): 260-270, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420690

RESUMO

Modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc) promotes tumor cell survival, proliferation, epigenetic changes, angiogenesis, invasion, and metastasis. Here we demonstrate that in conditions of elevated glucose, there is increased expression of key drug resistance proteins (ABCB1, ABCG2, ERCC1, and XRCC1), all of which are regulated by the Hedgehog pathway. In elevated glucose conditions, we determined that the Hedgehog pathway transcription factors, GLI1 and GLI2, are modified by O-GlcNAcylation. This modification functionally enhanced their transcriptional activity. The activity of GLI was enhanced when O-GlcNAcase was inhibited, while inhibiting O-GlcNAc transferase caused a decrease in GLI activity. The metabolic impact of hyperglycemic conditions impinges on maintaining PKM2 in the less active state that facilitates the availability of glycolytic intermediates for biosynthetic pathways. Interestingly, under elevated glucose conditions, PKM2 directly influenced GLI activity. Specifically, abrogating PKM2 expression caused a significant decline in GLI activity and expression of drug resistance proteins. Cumulatively, our results suggest that elevated glucose conditions upregulate chemoresistance through elevated transcriptional activity of the Hedgehog/GLI pathway. Interfering in O-GlcNAcylation of the GLI transcription factors may be a novel target in controlling cancer progression and drug resistance of breast cancer.


Assuntos
Acetilglucosamina/metabolismo , Glucose/metabolismo , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Hiperglicemia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
9.
Am J Physiol Heart Circ Physiol ; 316(5): H1014-H1026, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575437

RESUMO

The endoplasmic reticulum/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1), a key mediator of store-operated Ca2+ entry, is expressed in cardiomyocytes and has been implicated in regulating multiple cardiac processes, including hypertrophic signaling. Interestingly, cardiomyocyte-restricted deletion of STIM1 (crSTIM1-KO) results in age-dependent endoplasmic reticulum stress, altered mitochondrial morphology, and dilated cardiomyopathy in mice. Here, we tested the hypothesis that STIM1 deficiency may also impact cardiac metabolism. Hearts isolated from 20-wk-old crSTIM1-KO mice exhibited a significant reduction in both oxidative and nonoxidative glucose utilization. Consistent with the reduction in glucose utilization, expression of glucose transporter 4 and AMP-activated protein kinase phosphorylation were all reduced, whereas pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphorylation were increased, in crSTIM1-KO hearts. Despite similar rates of fatty acid oxidation in control and crSTIM1-KO hearts ex vivo, crSTIM1-KO hearts contained increased lipid/triglyceride content as well as increased fatty acid-binding protein 4, fatty acid synthase, acyl-CoA thioesterase 1, hormone-sensitive lipase, and adipose triglyceride lipase expression compared with control hearts, suggestive of a possible imbalance between fatty acid uptake and oxidation. Insulin-mediated alterations in AKT phosphorylation were observed in crSTIM1-KO hearts, consistent with cardiac insulin resistance. Interestingly, we observed abnormal mitochondria and increased lipid accumulation in 12-wk crSTIM1-KO hearts, suggesting that these changes may initiate the subsequent metabolic dysfunction. These results demonstrate, for the first time, that cardiomyocyte STIM1 may play a key role in regulating cardiac metabolism. NEW & NOTEWORTHY Little is known of the physiological role of stromal interaction molecule 1 (STIM1) in the heart. Here, we demonstrate, for the first time, that hearts lacking cardiomyocyte STIM1 exhibit dysregulation of both cardiac glucose and lipid metabolism. Consequently, these results suggest a potentially novel role for STIM1 in regulating cardiac metabolism.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Metabolismo dos Lipídeos , Miócitos Cardíacos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos Knockout , Oxirredução , Fosforilação , Proteínas Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Esterol Esterase/metabolismo , Molécula 1 de Interação Estromal/deficiência , Molécula 1 de Interação Estromal/genética , Tioléster Hidrolases/metabolismo
10.
J Neurosci ; 37(34): 8207-8215, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28760863

RESUMO

O-GlcNAcylation is a ubiquitous and dynamic post-translational modification involving the O-linkage of ß-N-acetylglucosamine to serine/threonine residues of membrane, cytosolic, and nuclear proteins. This modification is similar to phosphorylation and regarded as a key regulator of cell survival and homeostasis. Previous studies have shown that phosphorylation of serine residues on synaptic proteins is a major regulator of synaptic strength and long-term plasticity, suggesting that O-GlcNAcylation of synaptic proteins is likely as important as phosphorylation; however, few studies have investigated its role in synaptic efficacy. We recently demonstrated that acutely increasing O-GlcNAcylation induces a novel form of LTD at CA3-CA1 synapses, O-GlcNAc LTD. Here, using hippocampal slices from young adult male rats and mice, we report that epileptiform activity at CA3-CA1 synapses, generated by GABAAR inhibition, is significantly attenuated when protein O-GlcNAcylation is pharmacologically increased. This dampening effect is lost in slices from GluA2 KO mice, indicating a requirement of GluA2-containing AMPARs, similar to expression of O-GlcNAc LTD. Furthermore, we find that increasing O-GlcNAcylation decreases spontaneous CA3 pyramidal cell activity under basal and hyperexcitable conditions. This dampening effect was also observed on cortical hyperexcitability during in vivo EEG recordings in awake mice where the effects of the proconvulsant pentylenetetrazole are attenuated by acutely increasing O-GlcNAcylation. Collectively, these data demonstrate that the post-translational modification, O-GlcNAcylation, is a novel mechanism by which neuronal and synaptic excitability can be regulated, and suggest the possibility that increasing O-GlcNAcylation could be a novel therapeutic target to treat seizure disorders and epilepsy.SIGNIFICANCE STATEMENT We recently reported that an acute pharmacological increase in protein O-GlcNAcylation induces a novel form of long-term synaptic depression at hippocampal CA3-CA1 synapses (O-GlcNAc LTD). This synaptic dampening effect on glutamatergic networks suggests that increasing O-GlcNAcylation will depress pathological hyperexcitability. Using in vitro and in vivo models of epileptiform activity, we show that acutely increasing O-GlcNAc levels can significantly attenuate ongoing epileptiform activity and prophylactically dampen subsequent seizure activity. Together, our findings support the conclusion that protein O-GlcNAcylation is a regulator of neuronal excitability, and it represents a promising target for further research on seizure disorder therapeutics.


Assuntos
Acetilglucosamina/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Animais , Epilepsia/prevenção & controle , Feminino , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Ratos Sprague-Dawley
11.
J Mol Cell Cardiol ; 110: 80-95, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28736261

RESUMO

Cardiovascular physiology exhibits time-of-day-dependent oscillations, which are mediated by both extrinsic (e.g., environment/behavior) and intrinsic (e.g., circadian clock) factors. Disruption of circadian rhythms negatively affects multiple cardiometabolic parameters. Recent studies suggest that the cardiomyocyte circadian clock directly modulates responsiveness of the heart to metabolic stimuli (e.g., fatty acids) and stresses (e.g., ischemia/reperfusion). The aim of this study was to determine whether genetic disruption of the cardiomyocyte circadian clock impacts insulin-regulated pathways in the heart. Genetic disruption of the circadian clock in cardiomyocyte-specific Bmal1 knockout (CBK) and cardiomyocyte-specific Clock mutant (CCM) mice altered expression (gene and protein) of multiple insulin signaling components in the heart, including p85α and Akt. Both baseline and insulin-mediated Akt activation was augmented in CBK and CCM hearts (relative to littermate controls). However, insulin-mediated glucose utilization (both oxidative and non-oxidative) and AS160 phosphorylation were attenuated in CBK hearts, potentially secondary to decreased Inhibitor-1. Consistent with increased Akt activation in CBK hearts, mTOR signaling was persistently increased, which was associated with attenuation of autophagy, augmented rates of protein synthesis, and hypertrophy. Importantly, pharmacological inhibition of mTOR (rapamycin; 10days) normalized cardiac size in CBK mice. These data suggest that disruption of cardiomyocyte circadian clock differentially influences insulin-regulated processes, and provide new insights into potential pathologic mediators following circadian disruption.


Assuntos
Relógios Circadianos/genética , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insulina/farmacologia , Miócitos Cardíacos/patologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Autofagia/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ativação Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Resistência à Insulina/genética , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
12.
Biochim Biophys Acta ; 1861(10): 1579-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26721420

RESUMO

A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Adaptação Fisiológica , Proteínas CLOCK/metabolismo , Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta Hiperlipídica , Comportamento Alimentar , Masculino , Camundongos Mutantes , Contração Miocárdica , Especificidade de Órgãos , Estreptozocina
13.
Biochem Soc Trans ; 45(2): 545-553, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408494

RESUMO

The post-translational modification of serine and threonine residues of proteins found in numerous subcellular locations by O-linked N-acetylglucosamine (O-GlcNAc) is emerging as a key mediator of many cardiovascular pathophysiological processes. Early studies implicated increased protein O-GlcNAcylation as contributing to the cardiovascular complications associated with diabetes, whereas subsequent studies demonstrated that acute increases in O-GlcNAc levels were protective against ischemia/reperfusion injury. There is now a growing understanding that O-GlcNAc modification of proteins influences numerous cellular functions, including transcription, protein turnover, calcium handling, and bioenergetics. As a result, a more nuanced view of the role of protein O-GlcNAcylation in the cardiovascular system is emerging along with the recognition that it is required for normal cellular function and homeostasis. Consequently, the impact of changes in O-GlcNAc cycling due to stress or disease on the heart is complex and highly dependent on the specific context of these events. The goal of this review is to provide an overview of some of the more recent advances in our understanding of the role O-GlcNAcylation plays in mediating cardiovascular function and disease.


Assuntos
Acetilglucosamina/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas/química , Animais , Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
14.
Pharmacol Res ; 116: 45-56, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27988387

RESUMO

Diabetes mellitus significantly increases the risk of heart failure, independent of coronary artery disease. The mechanisms implicated in the development of diabetic heart disease, commonly termed diabetic cardiomyopathy, are complex, but much of the impact of diabetes on the heart can be attributed to impaired glucose handling. It has been shown that the maladaptive nutrient-sensing hexosamine biosynthesis pathway (HBP) contributes to diabetic complications in many non-cardiac tissues. Glucose metabolism by the HBP leads to enzymatically-regulated, O-linked attachment of a sugar moiety molecule, ß-N-acetylglucosamine (O-GlcNAc), to proteins, affecting their biological activity (similar to phosphorylation). In normal physiology, transient activation of HBP/O-GlcNAc mechanisms is an adaptive, protective means to enhance cell survival; interventions that acutely suppress this pathway decrease tolerance to stress. Conversely, chronic dysregulation of HBP/O-GlcNAc mechanisms has been shown to be detrimental in certain pathological settings, including diabetes and cancer. Most of our understanding of the impact of sustained maladaptive HBP and O-GlcNAc protein modifications has been derived from adipose tissue, skeletal muscle and other non-cardiac tissues, as a contributing mechanism to insulin resistance and progression of diabetic complications. However, the long-term consequences of persistent activation of cardiac HBP and O-GlcNAc are not well-understood; therefore, the goal of this timely review is to highlight current understanding of the role of the HBP pathway in development of diabetic cardiomyopathy.


Assuntos
Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Hexosaminas/biossíntese , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Glicosilação , Coração/fisiopatologia , Humanos
15.
Am J Physiol Heart Circ Physiol ; 311(1): H64-75, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199118

RESUMO

Myocardial fatty acid ß-oxidation is critical for the maintenance of energy homeostasis and contractile function in the heart, but its regulation is still not fully understood. While thioredoxin-interacting protein (TXNIP) has recently been implicated in cardiac metabolism and mitochondrial function, its effects on ß-oxidation have remained unexplored. Using a new cardiomyocyte-specific TXNIP knockout mouse and working heart perfusion studies, as well as loss- and gain-of-function experiments in rat H9C2 and human AC16 cardiomyocytes, we discovered that TXNIP deficiency promotes myocardial ß-oxidation via signaling through a specific microRNA, miR-33a. TXNIP deficiency leads to increased binding of nuclear factor Y (NFYA) to the sterol regulatory element binding protein 2 (SREBP2) promoter, resulting in transcriptional inhibition of SREBP2 and its intronic miR-33a. This allows for increased translation of the miR-33a target genes and ß-oxidation-promoting enzymes, carnitine octanoyl transferase (CROT), carnitine palmitoyl transferase 1 (CPT1), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase-ß (HADHB), and AMPKα and is associated with an increase in phospho-AMPKα and phosphorylation/inactivation of acetyl-CoA-carboxylase. Thus, we have identified a novel TXNIP-NFYA-SREBP2/miR-33a-AMPKα/CROT/CPT1/HADHB pathway that is conserved in mouse, rat, and human cardiomyocytes and regulates myocardial ß-oxidation.


Assuntos
Proteínas de Transporte/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Tiorredoxinas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Carnitina Aciltransferases/genética , Carnitina Aciltransferases/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Genótipo , Humanos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Miócitos Cardíacos/enzimologia , Oxirredução , Fenótipo , Interferência de RNA , Ratos , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Tiorredoxinas/genética , Transfecção
16.
Am J Physiol Heart Circ Physiol ; 310(11): H1520-32, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084392

RESUMO

Circadian clocks are critical modulators of metabolism. However, mechanistic links between cell autonomous clocks and metabolic processes remain largely unknown. Here, we report that expression of the biotin transporter slc5a6 gene is decreased in hearts of two distinct genetic mouse models of cardiomyocyte-specific circadian clock disruption [i.e., cardiomyocyte-specific CLOCK mutant (CCM) and cardiomyocyte-specific BMAL1 knockout (CBK) mice]. Biotinylation is an obligate posttranslational modification for five mammalian carboxylases: acetyl-CoA carboxylase α (ACCα), ACCß, pyruvate carboxylase (PC), methylcrotonyl-CoA carboxylase (MCC), and propionyl-CoA carboxylase (PCC). We therefore hypothesized that the cardiomyocyte circadian clock impacts metabolism through biotinylation. Consistent with decreased slc5a6 expression, biotinylation of all carboxylases is significantly decreased (10-46%) in CCM and CBK hearts. In association with decreased biotinylated ACC, oleate oxidation rates are increased in both CCM and CBK hearts. Consistent with decreased biotinylated MCC, leucine oxidation rates are significantly decreased in both CCM and CBK hearts, whereas rates of protein synthesis are increased. Importantly, feeding CBK mice with a biotin-enriched diet for 6 wk normalized myocardial 1) ACC biotinylation and oleate oxidation rates; 2) PCC/MCC biotinylation (and partially restored leucine oxidation rates); and 3) net protein synthesis rates. Furthermore, data suggest that the RRAGD/mTOR/4E-BP1 signaling axis is chronically activated in CBK and CCM hearts. Finally we report that the hepatocyte circadian clock also regulates both slc5a6 expression and protein biotinylation in the liver. Collectively, these findings suggest that biotinylation is a novel mechanism by which cell autonomous circadian clocks influence metabolic pathways.


Assuntos
Biotinilação , Carbono-Carbono Liases/metabolismo , Transtornos Cronobiológicos/metabolismo , Relógios Circadianos , Metabolismo Energético , Cardiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Biotina/administração & dosagem , Biotina/metabolismo , Proteínas CLOCK/genética , Carbono-Carbono Ligases/metabolismo , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Relógios Circadianos/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Cardiopatias/genética , Cardiopatias/fisiopatologia , Fígado/metabolismo , Masculino , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Piruvato Carboxilase/metabolismo , Simportadores/metabolismo , Fatores de Tempo
17.
Circ Res ; 114(7): 1094-102, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24526702

RESUMO

RATIONALE: Vascular calcification is a serious cardiovascular complication that contributes to the increased morbidity and mortality of patients with diabetes mellitus. Hyperglycemia, a hallmark of diabetes mellitus, is associated with increased vascular calcification and increased modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation). OBJECTIVE: We sought to determine the role of protein O-GlcNAcylation in regulating vascular calcification and the underlying mechanisms. METHODS AND RESULTS: Low-dose streptozotocin-induced diabetic mice exhibited increased aortic O-GlcNAcylation and vascular calcification, which was also associated with impaired aortic compliance in mice. Elevation of O-GlcNAcylation by administration of Thiamet-G, a potent inhibitor for O-GlcNAcase that removes O-GlcNAcylation, further accelerated vascular calcification and worsened aortic compliance of diabetic mice in vivo. Increased O-GlcNAcylation, either by Thiamet-G or O-GlcNAcase knockdown, promoted calcification of primary mouse vascular smooth muscle cells. Increased O-GlcNAcylation in diabetic arteries or in the O-GlcNAcase knockdown vascular smooth muscle cell upregulated expression of the osteogenic transcription factor Runx2 and enhanced activation of AKT. O-GlcNAcylation of AKT at two new sites, T430 and T479, promoted AKT phosphorylation, which in turn enhanced vascular smooth muscle cell calcification. Site-directed mutation of AKT at T430 and T479 decreased O-GlcNAcylation, inhibited phosphorylation of AKT at S473 and binding of mammalian target of rapamycin complex 2 to AKT, and subsequently blocked Runx2 transactivity and vascular smooth muscle cell calcification. CONCLUSIONS: O-GlcNAcylation of AKT at 2 new sites enhanced AKT phosphorylation and activation, thus promoting vascular calcification. Our studies have identified a novel causative effect of O-GlcNAcylation in regulating vascular calcification in diabetes mellitus and uncovered a key molecular mechanism underlying O-GlcNAcylation-mediated activation of AKT.


Assuntos
Acetilglucosamina/metabolismo , Diabetes Mellitus Experimental/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Calcificação Vascular/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glicosilação , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Piranos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/farmacologia , Calcificação Vascular/patologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
18.
J Neurosci ; 34(1): 10-21, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24381264

RESUMO

Serine phosphorylation of AMPA receptor (AMPAR) subunits GluA1 and GluA2 modulates AMPAR trafficking during long-term changes in strength of hippocampal excitatory transmission required for normal learning and memory. The post-translational addition and removal of O-linked ß-N-acetylglucosamine (O-GlcNAc) also occurs on serine residues. This, together with the high expression of the enzymes O-GlcNAc transferase (OGT) and ß-N-acetylglucosamindase (O-GlcNAcase), suggests a potential role for O-GlcNAcylation in modifying synaptic efficacy and cognition. Furthermore, because key synaptic proteins are O-GlcNAcylated, this modification may be as important to brain function as phosphorylation, yet its physiological significance remains unknown. We report that acutely increasing O-GlcNAcylation in Sprague Dawley rat hippocampal slices induces an NMDA receptor and protein kinase C-independent long-term depression (LTD) at hippocampal CA3-CA1 synapses (O-GcNAc LTD). This LTD requires AMPAR GluA2 subunits, which we demonstrate are O-GlcNAcylated. Increasing O-GlcNAcylation interferes with long-term potentiation, and in hippocampal behavioral assays, it prevents novel object recognition and placement without affecting contextual fear conditioning. Our findings provide evidence that O-GlcNAcylation dynamically modulates hippocampal synaptic function and learning and memory, and suggest that altered O-GlcNAc levels could underlie cognitive dysfunction in neurological diseases.


Assuntos
Acetilglucosaminidase/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Acilação/fisiologia , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
19.
J Biol Chem ; 289(50): 34449-56, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25336635

RESUMO

Our understanding of the role of protein O-GlcNAcylation in the regulation of the cardiovascular system has increased rapidly in recent years. Studies have linked increased O-GlcNAc levels to glucose toxicity and diabetic complications; conversely, acute activation of O-GlcNAcylation has been shown to be cardioprotective. However, it is also increasingly evident that O-GlcNAc turnover plays a central role in the delicate regulation of the cardiovascular system. Therefore, the goals of this minireview are to summarize our current understanding of how changes in O-GlcNAcylation influence cardiovascular pathophysiology and to highlight the evidence that O-GlcNAc cycling is critical for normal function of the cardiovascular system.


Assuntos
Acetilglucosamina/metabolismo , Sistema Cardiovascular/fisiopatologia , Proteínas/metabolismo , Animais , Sinalização do Cálcio , Sistema Cardiovascular/citologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Epigênese Genética , Glicosilação , Humanos , Proteínas/genética
20.
Am J Physiol Heart Circ Physiol ; 306(8): H1231-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24585777

RESUMO

The endoplasmic reticulum (ER) Ca(2+) sensor stromal interaction molecule 1 (STIM1) has been implicated as a key mediator of store-dependent and store-independent Ca(2+) entry pathways and maintenance of ER structure. STIM1 is present in embryonic, neonatal, and adult cardiomyocytes and has been strongly implicated in hypertrophic signaling; however, the physiological role of STIM1 in the adult heart remains unknown. We, therefore, developed a novel cardiomyocyte-restricted STIM1 knockout ((cr)STIM1-KO) mouse. In cardiomyocytes isolated from (cr)STIM1-KO mice, STIM1 expression was reduced by ∼92% with no change in the expression of related store-operated Ca(2+) entry proteins, STIM2, and Orai1. Immunoblot analyses revealed that (cr)STIM1-KO hearts exhibited increased ER stress from 12 wk, as indicated by increased levels of the transcription factor C/EBP homologous protein (CHOP), one of the terminal markers of ER stress. Transmission electron microscopy revealed ER dilatation, mitochondrial disorganization, and increased numbers of smaller mitochondria in (cr)STIM1-KO hearts, which was associated with increased mitochondrial fission. Using serial echocardiography and histological analyses, we observed a progressive decline in cardiac function in (cr)STIM1-KO mice, starting at 20 wk of age, which was associated with marked left ventricular dilatation by 36 wk. In addition, we observed the presence of an inflammatory infiltrate and evidence of cardiac fibrosis from 20 wk in (cr)STIM1-KO mice, which progressively worsened by 36 wk. These data demonstrate for the first time that STIM1 plays an essential role in normal cardiac function in the adult heart, which may be important for the regulation of ER and mitochondrial function.


Assuntos
Retículo Endoplasmático/fisiologia , Coração/fisiologia , Glicoproteínas de Membrana/fisiologia , Mitocôndrias Cardíacas/fisiologia , Animais , Canais de Cálcio , Cardiomiopatia Dilatada/etiologia , Estresse do Retículo Endoplasmático , Homeostase , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/química , Molécula 1 de Interação Estromal , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA