Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819367

RESUMO

Among CD4+ T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation. Thus, Th17 cells are key players in HIV pathogenesis and viral persistence. It is, however, unclear why these cells are highly susceptible to HIV-1 infection. Th17 cell differentiation depends on the expression of the master transcriptional regulator RORC2, a retinoic acid-related nuclear hormone receptor that regulates specific transcriptional programs by binding to promoter/enhancer DNA. Here, we report that RORC2 is a key host cofactor for HIV replication in Th17 cells. We found that specific inhibitors that bind to the RORC2 ligand-binding domain reduced HIV replication in CD4+ T cells. The depletion of RORC2 inhibited HIV-1 infection, whereas its overexpression enhanced it. RORC2 was also found to promote HIV-1 gene expression by binding to the nuclear receptor responsive element in the HIV-1 long terminal repeats (LTR). In treated HIV-1 patients, RORC2+ CD4 T cells contained more proviral DNA than RORC2- cells. Pharmacological inhibition of RORC2 potently reduced HIV-1 outgrowth in CD4+ T cells from antiretroviral-treated patients. Altogether, these results provide an explanation as to why Th17 cells are highly susceptible to HIV-1 infection and suggest that RORC2 may be a cell-specific target for HIV-1 therapy.


Assuntos
Regulação Viral da Expressão Gênica/genética , HIV-1/crescimento & desenvolvimento , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citocinas/metabolismo , Feminino , Expressão Gênica/genética , Infecções por HIV/imunologia , HIV-1/genética , Humanos , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Cultura Primária de Células , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/metabolismo , Células Th17/fisiologia , Fatores de Transcrição/metabolismo , Viremia/imunologia , Viremia/virologia , Replicação Viral/fisiologia
2.
Transfusion ; 62(9): 1779-1790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35919021

RESUMO

BACKGROUND: Plateletpheresis involves platelet separation and collection from whole blood while other blood cells are returned to the donor. Because platelets are replaced faster than red blood cells, as many as 24 donations can be done annually. However, some frequent apheresis platelet donors (>20 donations annually) display severe plateletpheresis-associated lymphopenia; in particular, CD4+ T but not B cell numbers are decreased. COVID-19 vaccination thereby provides a model to assess whether lymphopenic platelet donors present compromised humoral immune responses. STUDY DESIGN AND METHODS: We assessed vaccine responses following 2 doses of COVID-19 vaccination in a cohort of 43 plateletpheresis donors with a range of pre-vaccination CD4+ T cell counts (76-1537 cells/µl). In addition to baseline T cell measurements, antibody binding assays to full-length Spike and the Receptor Binding Domain (RBD) were performed pre- and post-vaccination. Furthermore, pseudo-particle neutralization and antibody-dependent cellular cytotoxicity assays were conducted to measure antibody functionality. RESULTS: Participants were stratified into two groups: <400 CD4/µl (n = 27) and ≥ 400 CD4/µl (n = 16). Following the first dose, 79% seroconverted within the <400 CD4/µl group compared to 87% in the ≥400 CD4/µl group; all donors were seropositive post-second dose with significant increases in antibody levels. Importantly differences in CD4+ T cell levels minimally impacted neutralization, Spike recognition, and IgG Fc-mediated effector functions. DISCUSSION: Overall, our results indicate that lymphopenic plateletpheresis donors do not exhibit significant immune dysfunction; they have retained the T and B cell functionality necessary for potent antibody responses after vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Linfopenia , Doadores de Sangue , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Humanos , Linfopenia/etiologia , Contagem de Plaquetas , Plaquetoferese/métodos
3.
CMAJ ; 193(22): E793-E800, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33980499

RESUMO

BACKGROUND: Patients receiving in-centre hemodialysis are at high risk of exposure to SARS-CoV-2 and death if infected. One dose of the BNT162b2 SARS-CoV-2 vaccine is efficacious in the general population, but responses in patients receiving hemodialysis are uncertain. METHODS: We obtained serial plasma from patients receiving hemodialysis and health care worker controls before and after vaccination with 1 dose of the BNT162b2 mRNA vaccine, as well as convalescent plasma from patients receiving hemodialysis who survived COVID-19. We measured anti-receptor binding domain (RBD) immunoglobulin G (IgG) levels and stratified groups by evidence of previous SARS-CoV-2 infection. RESULTS: Our study included 154 patients receiving hemodialysis (135 without and 19 with previous SARS-CoV-2 infection), 40 controls (20 without and 20 with previous SARS-CoV-2 infection) and convalescent plasma from 16 patients. Among those without previous SARS-CoV-2 infection, anti-RBD IgG was undetectable at 4 weeks in 75 of 131 (57%, 95% confidence interval [CI] 47% to 65%) patients receiving hemodialysis, compared with 1 of 20 (5%, 95% CI 1% to 23%) controls (p < 0.001). No patient with nondetectable levels at 4 weeks developed anti-RBD IgG by 8 weeks. Results were similar in non-immunosuppressed and younger individuals. Three patients receiving hemodialysis developed severe COVID-19 after vaccination. Among those with previous SARS-CoV-2 infection, median anti-RBD IgG levels at 8 weeks in patients receiving hemodialysis were similar to controls at 3 weeks (p = 0.3) and to convalescent plasma (p = 0.8). INTERPRETATION: A single dose of BNT162b2 vaccine failed to elicit a humoral immune response in most patients receiving hemodialysis without previous SARS-CoV-2 infection, even after prolonged observation. In those with previous SARS-CoV-2 infection, the antibody response was delayed. We advise that patients receiving hemodialysis be prioritized for a second BNT162b2 dose at the recommended 3-week interval.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Imunoglobulina G/sangue , Diálise Renal , Adulto , Anticorpos Antivirais/biossíntese , Vacina BNT162 , COVID-19/imunologia , Feminino , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Imunoglobulina M/sangue , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
4.
AIDS Res Ther ; 17(1): 15, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398104

RESUMO

BACKGROUND: Increased intestinal barrier permeability and subsequent gut microbial translocation are significant contributors to inflammatory non-AIDS comorbidities in people living with HIV (PLWH). Evidence in animal models have shown that markers of intestinal permeability and microbial translocation vary over the course of the day and are affected by food intake and circadian rhythms. However, daily variations of these markers are not characterized yet in PLWH. Herein, we assessed the variation of these markers over 24 h in PLWH receiving antiretroviral therapy (ART) in a well-controlled environment. METHODS: As in Canada, PLWH are predominantly men and the majority of them are now over 50 years old, we selected 11 men over 50 receiving ART with undetectable viremia for more than 3 years in this pilot study. Blood samples were collected every 4 h over 24 h before snacks/meals from 8:00 in the morning to 8:00 the next day. All participants consumed similar meals at set times, and had a comparable amount of sleep, physical exercise and light exposure. Plasma levels of bacterial lipopolysaccharide (LPS) and fungal (1→3)-ß-D-Glucan (BDG) translocation markers, along with markers of intestinal damage fatty acid binding protein (I-FABP) and regenerating islet-derived protein-3α (REG3α) were assessed by ELISA or the fungitell assay. RESULTS: Participants had a median age of 57 years old (range 50 to 63). Plasma levels of BDG and REG3α did not vary significantly over the course of the study. In contrast, a significant increase of LPS was detected between 12:00 and 16:00 (Z-score: - 1.15 ± 0.18 vs 0.16 ± 0.15, p = 0.02), and between 12:00 and 24:00 (- 1.15 ± 0.18 vs 0.89 ± 0.26, p < 0.001). The plasma levels of I-FABP at 16:00 (- 0.92 ± 0.09) were also significantly lower, compared to 8:00 the first day (0.48 ± 0.26, p = 0.002), 4:00 (0.73 ± 0.27, p < 0.001) or 8:00 on secondary day (0.88 ± 0.27, p < 0.001). CONCLUSIONS: Conversely to the fungal translocation marker BDG and the gut damage marker REG3α, time of blood collection matters for the proper evaluation for LPS and I-FABP as markers for the risk of inflammatory non-AIDS co-morbidities. These insights are instrumental for orienting clinical investigations in PLWH.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Translocação Bacteriana , Fungos/fisiologia , Microbioma Gastrointestinal , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Antígenos de Fungos/sangue , Translocação Bacteriana/efeitos dos fármacos , Biomarcadores/sangue , Fungos/efeitos dos fármacos , Infecções por HIV/epidemiologia , Humanos , Lipopolissacarídeos/sangue , Masculino , Pessoa de Meia-Idade , Projetos Piloto
5.
Nucleic Acids Res ; 45(1): 1-14, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899559

RESUMO

RNase H enzymes sense the presence of ribonucleotides in the genome and initiate their removal by incising the ribonucleotide-containing strand of an RNA:DNA hybrid. Mycobacterium smegmatis encodes four RNase H enzymes: RnhA, RnhB, RnhC and RnhD. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of RnhA. We report that RnhA (like RnhC characterized previously) is an RNase H1-type magnesium-dependent endonuclease with stringent specificity for RNA:DNA hybrid duplexes. Whereas RnhA does not incise an embedded mono-ribonucleotide, it can efficiently cleave within tracts of four or more ribonucleotides in duplex DNA. We gained genetic insights to the division of labor among mycobacterial RNases H by deleting the rnhA, rnhB, rnhC and rnhD genes, individually and in various combinations. The salient conclusions are that: (i) RNase H1 activity is essential for mycobacterial growth and can be provided by either RnhC or RnhA; (ii) the RNase H2 enzymes RnhB and RnhD are dispensable for growth and (iii) RnhB and RnhA collaborate to protect M. smegmatis against oxidative damage in stationary phase. Our findings highlight RnhC, the sole RNase H1 in pathogenic mycobacteria, as a candidate drug discovery target for tuberculosis and leprosy.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Peróxido de Hidrogênio/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Ribonuclease H/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease H/metabolismo , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
6.
RNA ; 22(7): 1011-25, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165520

RESUMO

Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.


Assuntos
Fosfatase Ácida/genética , Regulação Fúngica da Expressão Gênica , Fosfatos/metabolismo , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Genes Fúngicos , Homeostase , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , RNA Polimerase II/química
7.
J Biol Chem ; 288(6): 4299-309, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23275338

RESUMO

Like other Gram-negative pathogens, Vibrio cholerae, the causative agent of the diarrheal disease cholera, secretes outer membrane vesicles (OMVs). OMVs are complex entities composed of a subset of envelope lipid and protein components and play a role in the delivery of effector molecules to host cells. We previously showed that V. cholerae O395 cells secrete OMVs that are internalized by host cells, but their role in pathogenesis has not been well elucidated. In the present study, we evaluated the interaction of OMVs with intestinal epithelial cells. These vesicles induced expression of proinflammatory cytokines such as IL-8 and GM-CSF and chemokines such as CCL2, CCL20, and thymic stromal lymphopoietin in epithelial cells through activation of MAPK and NF-κB pathways in NOD1-dependent manner. Epithelial cells stimulated with OMVs activated dendritic cells (DCs) in a direct co-culture system. Activated DCs expressed high levels of co-stimulatory molecules; released inflammatory cytokines IL-1ß, IL-6, TNF-α, and IL-23 and chemokines CCL22 and CCL17; and subsequently primed CD4(+) T cells leading to IL-4, IL-13, and IL-17 expression. These results suggest that V. cholerae O395 OMVs modulate the epithelial proinflammatory response and activate DCs, which promote T cell polarization toward an inflammatory Th2/Th17 response.


Assuntos
Células Dendríticas/imunologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Proteína Adaptadora de Sinalização NOD1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Vibrio cholerae/fisiologia , Cólera/imunologia , Cólera/metabolismo , Cólera/microbiologia , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Sistema de Sinalização das MAP Quinases/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Células Th17/metabolismo , Células Th17/microbiologia , Células Th2/metabolismo , Células Th2/microbiologia
8.
PLoS Biol ; 9(2): e1000588, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21304926

RESUMO

The bacterial second messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.


Assuntos
GMP Cíclico/análogos & derivados , Periplasma/metabolismo , Pseudomonas fluorescens/metabolismo , Transdução de Sinais , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Biofilmes , Cristalografia por Raios X , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Dimerização , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiologia , Relação Estrutura-Atividade
9.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895270

RESUMO

The majority of naturally-elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs), because they are unable to recognize the Env timer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly-neutralizing antibodies and even showed activity against HIV-1 infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.

10.
Cell Rep ; 42(6): 112634, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310858

RESUMO

The aryl hydrocarbon receptor (AhR) regulates Th17-polarized CD4+ T cell functions, but its role in HIV-1 replication/outgrowth remains unknown. Genetic (CRISPR-Cas9) and pharmacological inhibition reveal AhR as a barrier to HIV-1 replication in T cell receptor (TCR)-activated CD4+ T cells in vitro. In single-round vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection, AhR blockade increases the efficacy of early/late reverse transcription and subsequently facilitated integration/translation. Moreover, AhR blockade boosts viral outgrowth in CD4+ T cells of people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Finally, RNA sequencing reveals genes/pathways downregulated by AhR blockade in CD4+ T cells of ART-treated PLWH, including HIV-1 interactors and gut-homing molecules with AhR-responsive elements in their promoters. Among them, HIC1, a repressor of Tat-mediated HIV-1 transcription and a tissue-residency master regulator, is identified by chromatin immunoprecipitation as a direct AhR target. Thus, AhR governs a T cell transcriptional program controlling viral replication/outgrowth and tissue residency/recirculation, supporting the use of AhR inhibitors in "shock and kill" HIV-1 remission/cure strategies.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Hidrocarboneto Arílico , Humanos , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Receptores de Hidrocarboneto Arílico/genética , Células Th17 , Replicação Viral
11.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896781

RESUMO

While mRNA SARS-CoV-2 vaccination elicits strong humoral responses in the general population, humoral responses in people living with HIV (PLWH) remain to be clarified. Here, we conducted a longitudinal study of vaccine immunogenicity elicited after two and three doses of mRNA SARS-CoV-2 vaccine in PLWH stratified by their CD4 count. We measured the capacity of the antibodies elicited by vaccination to bind the Spike glycoprotein of different variants of concern (VOCs). We also evaluated the Fc-mediated effector functions of these antibodies by measuring their ability to eliminate CEM.NKr cells stably expressing SARS-CoV-2 Spikes. Finally, we measured the relative capacity of the antibodies to neutralize authentic SARS-CoV-2 virus after the third dose of mRNA vaccine. We found that after two doses of SARS-CoV-2 mRNA vaccine, PLWH with a CD4 count < 250/mm3 had lower levels of anti-RBD IgG antibodies compared to PLWH with a CD4 count > 250/mm3 (p < 0.05). A third dose increased these levels and importantly, no major differences were observed in their capacity to mediate Fc-effector functions and neutralize authentic SARS-CoV-2. Overall, our work demonstrates the importance of mRNA vaccine boosting in immuno-compromised individuals presenting low levels of CD4.


Assuntos
COVID-19 , Infecções por HIV , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Estudos Longitudinais , COVID-19/prevenção & controle , Anticorpos , RNA Mensageiro/genética , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Humoral , Vacinas de mRNA
12.
Cell Rep ; 42(1): 111983, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640355

RESUMO

HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Linfócitos T CD4-Positivos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV/metabolismo , Epitopos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos
13.
Cell Rep ; 42(1): 111998, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656710

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas Sintéticas , Mutação , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas de mRNA
14.
iScience ; 26(1): 105783, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36514310

RESUMO

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

15.
Cell Rep Med ; 4(3): 100955, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36863335

RESUMO

Cellular immune defects associated with suboptimal responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyze antibody, B cell, CD4+, and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CIs). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses, and enhances comparatively more T helper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (tumor necrosis factor alpha [TNFα]/interleukin [IL]-2 skewing), while others (CCR6, CXCR6, programmed cell death protein 1 [PD-1], and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieving robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Linfócitos T CD4-Positivos , Vacinas de mRNA
16.
J Bacteriol ; 194(16): 4415-25, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707706

RESUMO

The bacterial dinucleotide second messenger c-di-GMP has emerged as a central molecule in regulating bacterial behavior, including motility and biofilm formation. Proteins for the synthesis and degradation of c-di-GMP and effectors for its signal transmission are widely used in the bacterial domain. Previous work established the GGDEF-EAL domain-containing receptor LapD as a central switch in Pseudomonas fluorescens cell adhesion. LapD senses c-di-GMP inside the cytosol and relays this signal to the outside by the differential recruitment of the periplasmic protease LapG. Here we identify the core components of an orthologous system in Legionella pneumophila. Despite only moderate sequence conservation at the protein level, key features concerning the regulation of LapG are retained. The output domain of the LapD-like receptor from L. pneumophila, CdgS9, binds the LapG ortholog involving a strictly conserved surface tryptophan residue. While the endogenous substrate for L. pneumophila LapG is unknown, the enzyme processed the corresponding P. fluorescens substrate, indicating a common catalytic mechanism and substrate recognition. Crystal structures of L. pneumophila LapG provide the first atomic models of bacterial proteases of the DUF920 family and reveal a conserved calcium-binding site important for LapG function.


Assuntos
Cisteína Endopeptidases/química , Legionella pneumophila/enzimologia , Cálcio/metabolismo , Coenzimas/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
J Bacteriol ; 194(16): 4406-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707708

RESUMO

Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro studies, explains the basis of this calcium-dependent regulation. Based on the crystal structure of LapG of Legionella pneumophila in the accompanying report by Chatterjee and colleagues (D. Chatterjee et al., J. Bacteriol. 194:4415-4425, 2012), we show that the calcium-binding residues of LapG, D134 and E136, which are near the critical C135 active-site residue, are required for LapG activity of P. fluorescens in vivo and in vitro. Furthermore, we show that mutations in D134 and E136 result in LapG proteins no longer able to interact with LapD, indicating that calcium binding results in LapG adopting a conformation competent for interaction with the protein that regulates its activity. Finally, we show that citrate, an environmentally relevant calcium chelator, can impact LapG activity and thus biofilm formation, suggesting that a physiologically relevant chelator of calcium can impact biofilm formation by this organism.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cálcio/metabolismo , Coenzimas/metabolismo , Cisteína Endopeptidases/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/fisiologia , Substituição de Aminoácidos , Sítios de Ligação , Quelantes/metabolismo , Ácido Cítrico/metabolismo , Cisteína Endopeptidases/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo
18.
Viruses ; 14(1)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062348

RESUMO

The rapid emergence of SARS-CoV-2 variants is fueling the recent waves of the COVID-19 pandemic. Here, we assessed ACE2 binding and antigenicity of Mu (B.1.621) and A.2.5 Spikes. Both these variants carry some mutations shared by other emerging variants. Some of the pivotal mutations such as N501Y and E484K in the receptor-binding domain (RBD) detected in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) are now present within the Mu variant. Similarly, the L452R mutation of B.1.617.2 (Delta) variant is present in A.2.5. In this study, we observed that these Spike variants bound better to the ACE2 receptor in a temperature-dependent manner. Pseudoviral particles bearing the Spike of Mu were similarly neutralized by plasma from vaccinated individuals than those carrying the Beta (B.1.351) and Delta (B.1.617.2) Spikes. Altogether, our results indicate the importance of measuring critical parameters such as ACE2 interaction, plasma recognition and neutralization ability of each emerging variant.


Assuntos
SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células HEK293 , Humanos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Temperatura
19.
iScience ; 25(9): 104990, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36035196

RESUMO

Although SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTRs) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung, and heart). Compared to a cohort of SARS-CoV-2 naïve immunocompetent health care workers (HCWs), the second dose induced weak humoral responses in SOTRs, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, although the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.

20.
Cell Rep ; 38(7): 110368, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123652

RESUMO

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Animais , Anticorpos Antivirais/química , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/mortalidade , COVID-19/prevenção & controle , COVID-19/transmissão , Modelos Animais de Doenças , Epitopos , Humanos , Imunização Passiva/mortalidade , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Ligação Proteica , Conformação Proteica , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA