Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215769

RESUMO

Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features of CoVs is that they are all highly prone to recombination. An extreme example is the insertion of the P10 gene from reoviruses in the bat CoV GCCDC1, first discovered in Rousettus leschenaultii bats in China. Here, we report the detection of GCCDC1 in four different bat species (Eonycteris spelaea, Cynopterus sphinx, Rhinolophus shameli and Rousettus sp.) in Cambodia. This finding demonstrates a much broader geographic and bat species range for this virus and indicates common cross-species transmission. Interestingly, one of the bat samples showed a co-infection with an Alpha CoV most closely related to RsYN14, a virus recently discovered in the same genus (Rhinolophus) of bat in Yunnan, China, 2020. Taken together, our latest findings highlight the need to conduct active surveillance in bats to assess the risk of emerging CoVs, especially in Southeast Asia.


Assuntos
Quirópteros/virologia , Infecções por Coronaviridae/veterinária , Coronaviridae/classificação , Coronaviridae/genética , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Filogeografia , Recombinação Genética , Animais , Camboja/epidemiologia , China/epidemiologia , Quirópteros/classificação , Coronaviridae/isolamento & purificação , Infecções por Coronaviridae/epidemiologia , Infecções por Coronaviridae/transmissão , Evolução Molecular , Genoma Viral , Filogenia
2.
Emerg Microbes Infect ; 10(1): 1457-1470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34120576

RESUMO

Zika virus (ZIKV) is an emerging arbovirus with recent global expansion. Historically, ZIKV infections with Asian lineages have been associated with mild disease such as rash and fever. However, recent Asian sub-lineages have caused outbreaks in the South Pacific and Latin America with increased prevalence of neurological disorders in infants and adults. Asian sub-lineage differences may partially explain the range of disease severity observed. However, the effect of Asian sub-lineage differences on pathogenesis remains poorly characterized. Current study conducts a head-to-head comparison of three Asian sub-lineages that are representative of the circulating ancestral mild Asian strain (ZIKV-SG), the 2007 epidemic French Polynesian strain (ZIKV-FP), and the 2013 epidemic Brazil strain (ZIKV-Brazil) in adult Cynomolgus macaques. Animals infected intervenously or subcutaneously with either of the three clinical isolates showed sub-lineage-specific differences in viral pathogenesis, early innate immune responses and systemic inflammation. Despite the lack of neurological symptoms in infected animals, the epidemiologically neurotropic ZIKV sub-lineages (ZIKV-Brazil and/or ZIKV-FP) were associated with more sustained viral replication, higher systemic inflammation (i.e. higher levels of TNFα, MCP-1, IL15 and G-CSF) and greater percentage of CD14+ monocytes and dendritic cells in blood. Multidimensional analysis showed clustering of ZIKV-SG away from ZIKV-Brazil and ZIKV-FP, further confirming sub-lineage differences in the measured parameters. These findings highlight greater systemic inflammation and monocyte recruitment as possible risk factors of adult ZIKV disease observed during the 2007 FP and 2013 Brazil epidemics. Future studies should explore the use of anti-inflammatory therapeutics as early treatment to prevent ZIKV-associated disease in adults.


Assuntos
Imunidade Inata , Infecção por Zika virus/imunologia , Zika virus/classificação , Zika virus/imunologia , Zika virus/patogenicidade , Adulto , Animais , Ásia , Brasil , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Interleucina-15/genética , Interleucina-15/imunologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Monócitos/imunologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Virulência , Replicação Viral , Zika virus/genética , Infecção por Zika virus/virologia
3.
Nat Commun ; 12(1): 5113, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433821

RESUMO

SARS-CoV-2 is a major threat to global health. Here, we investigate the RNA structure and RNA-RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 in cells using Illumina and Nanopore platforms. We identify twelve potentially functional structural elements within the SARS-CoV-2 genome, observe that subgenomic RNAs can form different structures, and that WT and Δ382 virus genomes fold differently. Proximity ligation sequencing identify hundreds of RNA-RNA interactions within the virus genome and between the virus and host RNAs. SARS-CoV-2 genome binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites are enriched in viral untranslated regions, associated with increased virus pair-wise interactions, and are decreased in host mRNAs upon virus infection, suggesting that the virus sequesters methylation machinery from host RNAs towards its genome. These studies deepen our understanding of the molecular and cellular basis of SARS-CoV-2 pathogenicity and provide a platform for targeted therapy.


Assuntos
COVID-19/virologia , Interações entre Hospedeiro e Microrganismos , RNA Viral/metabolismo , RNA/metabolismo , SARS-CoV-2/fisiologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/fisiopatologia , Metilação de DNA , Genoma Viral , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética
4.
J Med Virol ; 82(3): 407-14, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20087930

RESUMO

In vivo gene delivery using human adenovirus serotype 5 (AdV5) vectors is being explored for vaccination purposes. The presence of anti-AdV5 antibodies in human serum arising from natural exposure to AdV5 can interfere potentially with and compromise the efficacy of rAdV5-based vaccine vectors. In this report, a collection of 114 sera from healthy adult Indian blood donors was analyzed for the presence of anti-AdV5 antibodies, using an AdV5 vector encoding the green fluorescent protein (GFP) to monitor the presence of anti-AdV5 neutralizing antibodies in human sera based on their ability to block virus entry into HeLa cells which express the Coxsackievirus-and-Adenovirus Receptor (CAR). In this assay all samples tested were positive for anti-AdV5 antibodies, with titers varying over a very wide range. It was also observed that these antibodies facilitated the uptake of the reporter AdV5 vector into the monocytic cell line U937 which does not express CAR, but expresses Fc receptors (FcRs) instead. These observations have implications for rAdV5-based vaccine development. J. Med. Virol. 82:407-414, 2010. (c) 2010 Wiley-Liss, Inc.


Assuntos
Infecções por Adenovirus Humanos/epidemiologia , Adenovírus Humanos/imunologia , Anticorpos Antivirais/sangue , Vetores Genéticos/imunologia , Infecções por Adenovirus Humanos/imunologia , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Facilitadores , Doadores de Sangue , Linhagem Celular , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Estudos Soroepidemiológicos , Internalização do Vírus
5.
PLoS Negl Trop Dis ; 13(4): e0007184, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31022183

RESUMO

The frequency of epidemics caused by Dengue viruses 1-4, Zika virus and Chikungunya viruses have been on an upward trend in recent years driven primarily by uncontrolled urbanization, mobility of human populations and geographical spread of their shared vectors, Aedes aegypti and Aedes albopictus. Infections by these viruses present with similar clinical manifestations making them challenging to diagnose; this is especially difficult in regions of the world hyperendemic for these viruses. In this study, we present a targeted-enrichment methodology to simultaneously sequence the complete viral genomes for each of these viruses directly from clinical samples. Additionally, we have also developed a customized computational tool (BaitMaker) to design these enrichment baits. This methodology is robust in its ability to capture diverse sequences and is amenable to large-scale epidemiological studies. We have applied this methodology to two large cohorts: a febrile study based in Colombo, Sri Lanka taken during the 2009-2015 dengue epidemic (n = 170) and another taken during the 2016 outbreak of Zika virus in Singapore (n = 162). Results from these studies indicate that we were able to cover an average of 97.04% ± 0.67% of the full viral genome from samples in these cohorts. We also show detection of one DENV3/ZIKV co-infected patient where we recovered full genomes for both viruses.


Assuntos
Vírus Chikungunya/genética , Vírus da Dengue/genética , Genoma Viral , Técnicas de Amplificação de Ácido Nucleico/métodos , Zika virus/genética , Linhagem Celular , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Coinfecção/epidemiologia , Coinfecção/transmissão , Biologia Computacional , Dengue/diagnóstico , Vírus da Dengue/isolamento & purificação , Surtos de Doenças , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Singapura/epidemiologia , Sri Lanka/epidemiologia , Zika virus/isolamento & purificação , Infecção por Zika virus/diagnóstico
6.
Nat Commun ; 10(1): 1408, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926818

RESUMO

Dengue (DENV) and Zika (ZIKV) viruses are clinically important members of the Flaviviridae family with an 11 kb positive strand RNA genome that folds to enable virus function. Here, we perform structure and interaction mapping on four DENV and ZIKV strains inside virions and in infected cells. Comparative analysis of SHAPE reactivities across serotypes nominates potentially functional regions that are highly structured, conserved, and contain low synonymous mutation rates. Interaction mapping by SPLASH identifies many pair-wise interactions, 40% of which form alternative structures, suggesting extensive structural heterogeneity. Analysis of shared interactions between serotypes reveals a conserved macro-organization whereby interactions can be preserved at physical locations beyond sequence identities. We further observe that longer-range interactions are preferentially disrupted inside cells, and show the importance of new interactions in virus fitness. These findings deepen our understanding of Flavivirus genome organization and serve as a resource for designing therapeutics in targeting RNA viruses.


Assuntos
Mapeamento Cromossômico , Vírus da Dengue/química , Vírus da Dengue/genética , Zika virus/química , Zika virus/genética , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Genoma Viral , Humanos , Camundongos , Modelos Moleculares , Mutação/genética , Ácidos Nicotínicos , RNA Viral/química , Vírion/genética
7.
Sci Rep ; 7(1): 3594, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620207

RESUMO

Cyclic GMP-AMP synthetase (cGAS) is a DNA-specific cytosolic sensor, which detects and initiates host defense responses against microbial DNA. It is thus curious that a recent study identified cGAS as playing important roles in inhibiting positive-sense single-stranded RNA (+ssRNA) viral infection, especially since RNA is not known to activate cGAS. Using a dengue virus serotype 2 (DENV-2) vaccine strain (PDK53), we show that infection creates an endogenous source of cytosolic DNA in infected cells through the release of mitochondrial DNA (mtDNA) to drive the production of cGAMP by cGAS. Innate immune responses triggered by cGAMP contribute to limiting the spread of DENV to adjacent uninfected cells through contact dependent gap junctions. Our result thus supports the notion that RNA virus indirectly activates a DNA-specific innate immune signaling pathway and highlights the breadth of the cGAS-induced antiviral response.


Assuntos
DNA Mitocondrial/metabolismo , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Receptores Imunológicos/metabolismo , Animais , Linhagem Celular , Cricetinae , Células Epiteliais/imunologia , Humanos
8.
PLoS One ; 8(5): e65231, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717696

RESUMO

Activating Fc gamma receptors (FcγRs) in hematopoietic cells serve to remove antibody-opsonized antigens, including dengue virus (DENV), from systemic circulation. While neutralizing antibody concentrations provide humoral immunity, cross-reactive or sub-neutralizing levels of antibody can result in antibody-dependent enhancement of DENV infection that increases overall viral burden. Recently, it has been suggested that the antibody levels needed for DENV neutralization differs when different FcγR is engaged. If this is true, the threshold titer used to infer immunity should be influenced by FcγR usage. Here, using cells that express both activating and inhibitory FcγRs, we show that the type of FcγR engaged during phagocytosis can influence the antibody concentration requirement for DENV neutralization. We demonstrate that phagocytosis through FcγRI requires significantly less antibody for complete DENV neutralization compared to FcγRIIA. Furthermore, when DENV is opsonized with sub-neutralizing levels of antibody, FcγRI-mediated phagocytosis resulted in significantly reduced DENV titers compared to FcγRIIA. However, while FcγRI may remove antibody-opsonized DENV more efficiently, this receptor is only preferentially engaged by clustering when neutralizing, but not sub-neutralizing antibody concentrations, were used. Collectively, our study demonstrates that activating FcγR usage may influence antibody titers needed for DENV neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Receptores de IgG/imunologia , Animais , Western Blotting , Linhagem Celular , Vírus da Dengue/crescimento & desenvolvimento , Citometria de Fluxo , Humanos , Testes de Neutralização , Fagocitose , RNA Interferente Pequeno/genética , Ensaio de Placa Viral
9.
Expert Opin Ther Pat ; 18(3): 293-307, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20144086

RESUMO

BACKGROUND: Engineered adenoviruses are being increasingly explored as immunoprophylactic or immunotherapeutic vaccine vectors. Encouraging data from preclinical studies using human adenovirus vectors carrying different antigen genes have resulted in many currently ongoing clinical trials. OBJECTIVE: The article seeks to review the current status of the use of adenoviruses as vaccine vectors. METHODS: This review is based on the patent literature since 2000 pertaining to the development of adenovirus vaccine vectors for infectious and non-infectious diseases. CONCLUSION: Human adenovirus-vectored vaccines have important limitations that stem from their immunogenicity and restrict their utility. This has spurred intensive efforts to find alternative adenovirus vectors and strategies, each with its own advantages and shortcomings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA