Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 30(19): 2201-11, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27467462

RESUMO

RATIONALE: Cyprodinil is a fungicide active on grapes, strawberries, tomatoes, and many other fruits. Under UV-visible irradiation, it undergoes photodegradation through various processes to form transformation products (TPs) whose structures and potential toxicities are unknown. The structures of the TPs were elucidated by comparing the photodegradation of cyprodinil and cyprodinil-D5 . The potential toxicities of these compounds were compared with that of cyprodinil. METHODS: Aqueous solutions of cyprodinil were irradiated in a reactor equipped with a mercury vapor lamp. Analyses were carried out using high-performance liquid chromatography coupled to a quadrupole time-of-flight (QTOF) mass spectrometer or to a SolarixXR 9.4 Tesla Fourier transform (FT) mass spectrometer. High-resolution mass measurements, MS/MS and isotopic labeling experiments allowed structural elucidation of the cyprodinil TPs. The toxicities were estimated by three tests in silico using the TEST software and in vitro bioassays using Vibrio fischeri bacteria. These bioassays were carried out on irradiated solution for several exposure times and non-irradiated solutions. RESULTS: The structures of 19 photoproducts were characterized by LC/HRMS/MS after 4 h of irradiation of a cyprodinil aqueous solution. The use of cyprodinil-D5 allowed the TPs to be characterized with more confidence. Knowing the structure of the TPs allows the estimation of their potential toxicities by in silico tests. Most of the photoproducts are potentially more toxic than the parent compound, based on the oral rat LD50 values, and most of them might induce more developmental and mutagenic toxicities. In vitro assays on Vibrio fischeri bacteria showed that the global ecotoxicity of the cyprodinil solution significantly increases with irradiation time. CONCLUSIONS: Structures of photoproducts were characterized after irradiation of a cyprodinil aqueous solution combining LC/HRMS, LC/HRMS/MS and the use of a labeled compound. Their formations imply several photodegradation reactions, namely direct bond cleavages, cyclization, isomerization and hydroxylation. Most of the TPs exhibit a toxicity significantly higher than that of the parent molecule. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Fungicidas Industriais/química , Pirimidinas/química , Aliivibrio fischeri/metabolismo , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Fungicidas Industriais/toxicidade , Cinética , Fotólise , Pirimidinas/toxicidade , Ratos , Espectrometria de Massas em Tandem , Raios Ultravioleta
2.
J Chromatogr A ; 1441: 75-82, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26961913

RESUMO

UV-visible irradiation of thiophanate-methyl (TM) led to the formation of nine photoproducts that were characterized by high performance liquid chromatography coupled with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Although carbendazime has been reported in the literature to be the major metabolite and photoproduct of thiophanate-methyl, it was not detected in this study. However, an isomer of carbendazime referred as PP2, which was unambiguously characterized owing to CID experiments, was found in great abundance. Grape berries and cherry tomatoes treated with aqueous solutions of thiophanate-methyl were submitted to irradiation under laboratory conditions. TM and PP2 were detected in both peel and flesh of berries. The ability of TM and PP2 to pass through the fruit skin has been shown to be highly compound and matrix dependent. In vitro bioassays on Vibrio fischeri bacteria showed that the global ecotoxicity of the TM solution increases significantly with the irradiation time. PP2 should likely contribute to this ecotoxicity enhancement since in silico estimations for Daphnia magna provide a LC50 value seven times lower for PP2 than for the parent molecule.


Assuntos
Solanum lycopersicum/química , Tiofanato/efeitos da radiação , Vitis/química , Aliivibrio fischeri/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador , Daphnia , Frutas/química , Luz , Fotólise , Soluções , Espectrometria de Massas em Tandem/métodos , Tiofanato/química , Tiofanato/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA