Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445210

RESUMO

Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCßII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCßII specific inhibitor peptide ßIIV5-3-treated IR. Vehicle or ßIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCßII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 µM) to evaluate the inhibition of GLS1 on neuronal viability. PKCßII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by ßIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCßII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.


Assuntos
Transtornos Cerebrovasculares/enzimologia , Glutaminase/metabolismo , Hipocampo/enzimologia , Mitocôndrias/enzimologia , Proteína Quinase C beta/metabolismo , Traumatismo por Reperfusão/enzimologia , Animais , Transtornos Cerebrovasculares/patologia , Gerbillinae , Hipocampo/patologia , Mitocôndrias/patologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
2.
Int J Parasitol Parasites Wildl ; 13: 275-282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312859

RESUMO

Lungworms from the genus Dictyocaulus are the causative agents of verminous pneumonia in domestic and wild ungulates. Recently, in 2017, a new species was isolated from red deer and described as Dictyocaulus cervi; however, little is known about its epidemiology and pathogenicity in other cervids. The aim of our study was to determine the extent of infection with Dictyocaulus nematodes in the moose population in Poland. Parasitological necropsies were performed in 18 moose and 249 faecal samples were analysed. A combination of multiplex PCR and analysis of the partial SSU, cox1 and cyt B regions revealed the presence of D. cervi infection in two of the necropsied moose. Histopathological examinations revealed changes, including multiple cross sections of larvae of nematodes in alveoli, massive pulmonary fibrosis, mononuclear cell infiltration and diffuse alveolar damage in the lungs of four animals. The lesions were more pronounced when adult Dictyocaulus nematodes were present in the bronchi and bronchioles. Some of the observed pathological changes could be attributed to co-infection by nematodes of the Protostrongylidae, whose larvae were found in all four animals with lung pathologies. In the faeces, Dictyocaulus sp. larvae only occurred together with Protostrongylidae larvae; in addition, higher numbers of Protostrongylidae larvae were excreted in the faeces of animals with dictyocaulosis. The present study is the first report of the presence of D. cervi in moose, and demonstrates the value of multiplex PCR in the identification of Dictyocaulus nematodes. Our findings indicate that co-infections with multiple species of lung nematodes in moose may be commonplace, and this should be considered as a factor aggravating the course of parasitosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA