Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700355

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Assuntos
Antivirais , Aspartato Carbamoiltransferase , Tratamento Farmacológico da COVID-19 , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Inibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspartato Carbamoiltransferase/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Di-Hidro-Orotase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Anal Chem ; 95(39): 14777-14786, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37729435

RESUMO

Two solutions can be rapidly mixed using theta glass emitters, with products measured using electrospray ionization mass spectrometry. The relative flow rates of the two emitter channels can be measured using different calibration compounds in each channel, or the flow rates are often assumed to be the same. The relative flow rates of each channel can be essentially the same when the emitters are positioned directly in front of the capillary entrance of a mass spectrometer, but the relative flow rates can be varied by up to 3 orders of magnitude by moving the position of the emitter tip ±1 cm in a direction that is perpendicular to the inner divider. Results of the emitter position on the different concentrations of reagents in the initially formed electrospray droplets are demonstrated through protein denaturation using a supercharging reagent as well as two different bimolecular reactions. The average charge state of myoglobin changed from +7.8 to +13.8 when 2.5% sulfolane was mixed with a 200 mM ammonium acetate solution containing the protein when the position of the emitter was scanned in front of the mass spectrometer inlet. The conversion ratio of a bimolecular reaction was changed from 0.98 to 0.04 with varying emitter positions. These results show that the relative flow rates must be carefully monitored because the droplet composition depends strongly on the position of the theta glass emitters. This method can be used to measure the dependence of reaction kinetics on different solution concentrations by using a single emitter and only two solutions.

3.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768310

RESUMO

Osteomyelitis is a limb- and life-threatening orthopedic infection predominantly caused by Staphylococcus aureus biofilms. Bone infections are extremely challenging to treat clinically. Therefore, we have been designing, synthesizing, and testing novel antibiotic conjugates to target bone infections. This class of conjugates comprises bone-binding bisphosphonates as biochemical vectors for the delivery of antibiotic agents to bone minerals (hydroxyapatite). In the present study, we utilized a real-time impedance-based assay to study the growth of Staphylococcus aureus biofilms over time and to test the antimicrobial efficacy of our novel conjugates on the inhibition of biofilm growth in the presence and absence of hydroxyapatite. We tested early and newer generation quinolone antibiotics (ciprofloxacin, moxifloxacin, sitafloxacin, and nemonoxacin) and several bisphosphonate-conjugated versions of these antibiotics (bisphosphonate-carbamate-sitafloxacin (BCS), bisphosphonate-carbamate-nemonoxacin (BCN), etidronate-carbamate-ciprofloxacin (ECC), and etidronate-carbamate-moxifloxacin (ECX)) and found that they were able to inhibit Staphylococcus aureus biofilms in a dose-dependent manner. Among the conjugates, the greatest antimicrobial efficacy was observed for BCN with an MIC of 1.48 µg/mL. The conjugates demonstrated varying antimicrobial activity depending on the specific antibiotic used for conjugation, the type of bisphosphonate moiety, the chemical conjugation scheme, and the presence or absence of hydroxyapatite. The conjugates designed and tested in this study retained the bone-binding properties of the parent bisphosphonate moiety as confirmed using high-performance liquid chromatography. They also retained the antimicrobial activity of the parent antibiotic in the presence or absence of hydroxyapatite, albeit at lower levels due to the nature of their chemical modification. These findings will aid in the optimization and testing of this novel class of drugs for future applications to pharmacotherapy in osteomyelitis.


Assuntos
Osteomielite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Difosfonatos/uso terapêutico , Moxifloxacina , Ácido Etidrônico/uso terapêutico , Impedância Elétrica , Antibacterianos/química , Infecções Estafilocócicas/tratamento farmacológico , Osteomielite/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Biofilmes , Durapatita/química , Testes de Sensibilidade Microbiana
4.
Angew Chem Int Ed Engl ; 61(30): e202201843, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35583940

RESUMO

Porphyromonas gingivalis is a keystone pathogen in periodontal disease. We herein report a dual-modal fluorescent and photoacoustic imaging probe for the detection of gingipain proteases secreted by P. gingivalis. Upon proteolytic cleavage by Arg-specific gingipain (RgpB), five-fold photoacoustic enhancement and >100-fold fluorescence activation was measured with detection limits of 1.1 nM RgpB and 5.0E4 CFU mL-1 bacteria in vitro. RgpB activity was imaged in porcine jaws with low-nanomolar sensitivity. Diagnostic efficacy was evaluated in gingival crevicular fluid samples from subjects with and without periodontal disease, wherein activation was correlated to qPCR-based detection of P. gingivalis (Pearson's r=0.71). Finally, photoacoustic imaging of RgpB-cleaved probe was achieved in murine brains ex vivo, with relevance and potential utility for disease models of general infection by P. gingivalis, motivated by the recent biological link between gingipain and Alzheimer's disease.


Assuntos
Doenças Periodontais , Porphyromonas gingivalis , Adesinas Bacterianas , Animais , Cisteína Endopeptidases , Corantes Fluorescentes , Cisteína Endopeptidases Gingipaínas , Humanos , Camundongos , Suínos
5.
Periodontol 2000 ; 82(1): 42-64, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850623

RESUMO

The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.


Assuntos
Herpesviridae , Adulto , Aggregatibacter actinomycetemcomitans , Citomegalovirus , Herpesvirus Humano 4 , Humanos , Porphyromonas gingivalis
6.
Eur J Oral Sci ; 128(2): 136-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977126

RESUMO

There are five evolutionarily divergent clades of Aggregatibacter actinomycetemcomitans, with possible differences in phenotype and virulence potential among strains. This study examined the formation of biofilm by each of 11 distinct strains of A. actinomycetemcomitans, alone or after coculture with two species of oral bacteria (Porphyromonas gingivalis ATCC33277 or Dialister pneumosintes ATCC33048). Confocal laser scanning microscopy (CLSM) and electron microscopy were used to characterize the dual-species biofilms of interest. A reduction in dual-species A. actinomycetemcomitans-P. gingivalis biofilms was observed for A. actinomycetemcomitans RHAA1, suggesting an antagonistic relationship. The amounts of dual-species A. actinomycetemcomitans-D. pneumosintes biofilms were either increased or decreased in some - but not all - strains, indicative of strain-specific phenotypes. The CLSM analyses confirmed the existence of an antagonistic relationship between A. actinomycetemcomitans D7S-1 and P. gingivalis ATCC33277, and a synergistic relationship between A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048. The electron microscopy analyses revealed distinct morphological features of A. actinomycetemcomitans D7S-1 and D. pneumosintes ATCC33048 dual-species biofilms. The results indicate that the relationship between A. actinomycetemcomitans and oral bacteria may vary among strains, which could lead to distinct strain-specific patterns of niche sharing in subgingival microbiota.


Assuntos
Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis , Veillonellaceae , Bacteroides , Biofilmes
7.
JOM (1989) ; 71(4): 1271-1280, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31178649

RESUMO

The rising use of titanium dental implants has increased the prevalence of peri-implant disease that shortens their useful life. A growing view of peri-implant disease suggests that plaque accumulation and microbiome dysbiogenesis trigger a host immune inflammatory response that destroys soft and hard tissues supporting the implant. The incidence of peri-implant disease is difficult to estimate, but with over 3 million implants placed in the USA alone, and the market growing by 500,000 implants/year, such extensive use demands additional interceptive approaches. We report a water-based, nonsur-gical approach to address peri-implant disease using a bifunctional peptide film, which can be applied during initial implant placement and later reapplied to existing implants to reduce bacterial growth. Bifunctional peptides are based upon a titanium binding peptide (TiBP) optimally linked by a spacer peptide to an antimicrobial peptide (AMP). We show herein that dental implant surfaces covered with a bifunctional peptide film kill bacteria. Further, using a simple protocol for cleaning implant surfaces fouled by bacteria, the surface can be effectively recoated with TiBP-AMP to regain an antimicrobial state. Fouling, cleansing, and rebinding was confirmed for up to four cycles with minimal loss of binding efficacy. After fouling, rebinding with a water-based peptide film extends control over the oral microbiome composition, providing a novel nonsurgical treatment for dental implants.

8.
Med Microbiol Immunol ; 207(5-6): 329-338, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30056510

RESUMO

Phosphorylcholine (ChoP) is covalently incorporated into bacterial surface structures, contributing to host mimicry and promoting adhesion to surfaces. Our aims were to determine the frequency of ChoP display among Aggregatibacter actinomycetemcomitans strains, to clarify which surface structures bear ChoP, and whether ChoP-positivity relates to serum killing. The tested oral (N = 67) and blood isolates (N = 27) represented 6 serotypes. Mab TEPC-15 was used for immunoblotting of cell lysates and fractions and for immunofluorescence microscopy of cell surface-bound ChoP. The lysates were denatured with urea for hidden ChoP or treated with proteinase K to test whether it binds to a protein. Three ChoP-positive and two ChoP-negative strains were subjected to serum killing in the presence/absence of CRP and using Ig-depleted serum as complement source. Cell lysates and the first soluble cellular fraction revealed a < 10 kDa band in immunoblots. Among 94 strains, 27 were ChoP positive. No difference was found in the prevalence of ChoP-positive oral (21/67) and blood (6/27) strains. Immunofluorescence microscopy corresponded to the immunoblot results. Proteinase K abolished ChoP reactivity, whereas urea did not change the negative result. The TEPC-15-reactive protein was undetectable in Δflp1 mutant strain. The survival rate of serotype-b strains in serum was 100% irrespective of ChoP, but that of serotype-a was higher in ChoP-positive (85%) than ChoP-negative (71%) strains. The results suggest that a third of rough-colony strains harbor ChoP and that ChoP is attached to fimbrial subunit protein Flp1. It further seems that ChoP-positivity does not enhance but may reduce A. actinomycetemcomitans susceptibility to serum killing.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Aggregatibacter actinomycetemcomitans/imunologia , Proteínas de Bactérias/química , Fosforilcolina/análise , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Proteínas de Bactérias/genética , Sangue/microbiologia , Atividade Bactericida do Sangue , Deleção de Genes , Humanos , Immunoblotting , Viabilidade Microbiana , Microscopia de Fluorescência , Boca/microbiologia , Infecções por Pasteurellaceae/microbiologia , Sorogrupo
9.
Cytokine ; 66(1): 46-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24548424

RESUMO

Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1ß, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Toxinas Bacterianas/farmacologia , Citocinas/biossíntese , Macrófagos/microbiologia , Macrófagos/patologia , Fagocitose/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/microbiologia , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
10.
J Formos Med Assoc ; 113(2): 114-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24530245

RESUMO

BACKGROUND/PURPOSE: The genomes of different Aggregatibacter actinomycetemcomitans (A actinomycetemcomitans) strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A actinomycetemcomitans. In this study, we tested a novel genetic approach of gene deletion and restoration in a naturally competent A actinomycetemcomitans strain D7S-1. METHODS: Specific genes' deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. RESULTS: Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A actinomycetemcomitans. CONCLUSION: The protocol described in this study is efficient and specific for genetic manipulation of A actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A actinomycetemcomitans.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Deleção de Genes , Ilhas Genômicas
11.
Pathogens ; 13(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38787270

RESUMO

Microbes frequently experience nutrient deprivations in the natural environment and may enter dormancy. Aggregatibacter actinomycetemcomitans is known to establish long-term infections in humans. This study examined the dormancy-like phenotype of an A. actinomycetemcomitans strain D7S-1 and its isogenic smooth-colony mutant D7SS. A tissue culture medium RPMI-1640 was nutrient-deficient (ND) and unable to support A. actinomycetemcomitans growth. RPMI-1640 amended with bases was nutrient-limited (NL) and supported limited growth of A. actinomycetemcomitans less than the nutrient-enriched (NE) laboratory medium did. Strain D7S-1, after an initial 2-log reduction in viability, maintained viability from day 4 to day 15 in the NL medium. Strain D7SS, after 1-log reduction in viability, maintained viability from day 3 to day 5. In contrast, bacteria in the NE medium were either non-recoverable (D7S-1; >6-log reduction) or continued to lose viability (D7SS; 3-log reduction) on day 5 and beyond. Scanning and transmission electron microscopy showed that A. actinomycetemcomitans in the NL medium formed robust biofilms similar to those in the NE medium but with evidence of stress. A. actinomycetemcomitans in the ND medium revealed scant biofilms and extensive cellular damage. We concluded that A. actinomycetemcomitans grown in the NL medium exhibited a dormancy-like phenotype characterized by minimum growth, prolonged viability, and distinct cellular morphology.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38846578

RESUMO

Peri-implantitis is a complex infectious disease that manifests as progressive loss of alveolar bone around the dental implants and hyper-inflammation associated with microbial dysbiosis. Using antibiotics in treating peri-implantitis is controversial because of antibiotic resistance threats, the non-selective suppression of pathogens and commensals within the microbial community, and potentially serious systemic sequelae. Therefore, conventional treatment for peri-implantitis comprises mechanical debridement by nonsurgical or surgical approaches with adjunct local microbicidal agents. Consequently, current treatment options may not prevent relapses, as the pathogens either remain unaffected or quickly re-emerge after treatment. Successful mitigation of disease progression in peri-implantitis requires a specific mode of treatment capable of targeting keystone pathogens and restoring bacterial community balance toward commensal species. Antimicrobial peptides (AMPs) hold promise as alternative therapeutics through their bacterial specificity and targeted inhibitory activity. However, peptide sequence space exhibits complex relationships such as sparse vector encoding of sequences, including combinatorial and discrete functions describing peptide antimicrobial activity. In this paper, we generated a transparent Machine Learning (ML) model that identifies sequence-function relationships based on rough set theory using simple summaries of the hydropathic features of AMPs. Comparing the hydropathic features of peptides according to their differential activity for different classes of bacteria empowered predictability of antimicrobial targeting. Enriching the sequence diversity by a genetic algorithm, we generated numerous candidate AMPs designed for selectively targeting pathogens and predicted their activity using classifying rough sets. Empirical growth inhibition data is iteratively fed back into our ML training to generate new peptides, resulting in increasingly more rigorous rules for which peptides match targeted inhibition levels for specific bacterial strains. The subsequent top scoring candidates were empirically tested for their inhibition against keystone and accessory peri-implantitis pathogens as well as an oral commensal bacterium. A novel peptide, VL-13, was confirmed to be selectively active against a keystone pathogen. Considering the continually increasing number of oral implants placed each year and the complexity of the disease progression, prevalence of peri-implant diseases continues to rise. Our approach offers transparent ML-enabled paths towards developing antimicrobial peptide-based therapies targeting the changes in the microbial communities that can beneficially impact disease progression.

13.
Chem Sci ; 14(18): 4704-4713, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181782

RESUMO

Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air-water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 102 and 107 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 107 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled.

14.
Mol Oral Microbiol ; 38(1): 58-70, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35833243

RESUMO

Aggregatibacter actinomycetemcomitans, a Gram-negative oral pathobiont causing aggressive periodontitis and systemic infections, demonstrates serum resistance. We have identified a dsDNA-tailed bacteriophage, S1249, which was found to convert from this microorganism inducible by human serum into a lytic state to kill the bacterium. This phage demonstrated active transcripts when exposed to human serum: 20% of genes were upregulated more than 10-fold, and 45% of them were upregulated 5-10-fold when the bacterium was grown in the presence of human serum compared to without the presence of human serum. Transcriptional activation when grown in equine serum was less pronounced. This phage demonstrated a tail with inner rigid tubes and an outer contractile sheath, features of Myoviridae spp. Further characterization revealed that the lysogenized integration of the phage in the chromosome of A. actinomycetemcomitans occurred between the genes encoding cold-shock DNA-binding domain-containing protein (csp) and glutamyl-tRNA synthetase (gltX). Both phage DNA integrated lysogeny and nonintegrated pseudolysogeny were identified in the infected bacterium. A newly generated, lysogenized strain using this phage displayed similar attributes, including 63% growth inhibition compared to its isogenic phage-free strain when in the presence of human serum. Our data suggest that bacteriophage S1249 can be induced in the presence of human serum and enters the lytic cycle, which reduces the viability of infected bacteria in vivo.


Assuntos
Bacteriófagos , Humanos , Animais , Cavalos , Bacteriófagos/genética , Aggregatibacter actinomycetemcomitans , Lisogenia
15.
Artigo em Inglês | MEDLINE | ID: mdl-37829152

RESUMO

Background and Objective: The conventional method of detecting subgingival calculus involves using a periodontal probe to sense tactile differences on the dental root surface. Although efficient, this method can result in false positives and false negatives. This literature review explores alternative detection techniques that can detect subgingival calculus with improved accuracy and consistency. The accumulation of dental calculus below the gingival margin can foster periodontitis-inducing bacterial growth. Conventional methods of locating subgingival calculus are often inaccurate and highly dependent on clinician skill. This literature review evaluates techniques used to improve the accuracy of imaging and detecting subgingival calculus. Methods: Google Scholar, PubMed and PubMed Central databases were searched for peer-reviewed original articles evaluating subgingival calculus imaging and detection techniques. A total of 46 relevant articles ranging from 1981 to 2021 were included. Key Content and Findings: This narrative review discusses the subgingival calculus detection and imaging capabilities of periodontal endoscopy in an in vivo study and of optical coherence tomography (OCT), fluorescence spectroscopy, and differential reflectometry in in vitro settings. Each technique has unique benefits and limitations that distinguishes it from the others. Conclusions: In vitro studies have revealed that techniques including periodontal endoscopy, OCT, fluorescence spectroscopy, or differential reflectometry allow for a more accurate diagnosis of subgingival calculus deposits in comparison to detection via periodontal probing. Despite the improved results, the common limitations of these techniques include longer operation times and expensive equipment. Further studies are needed to transition these imaging and detection methods to clinical environments.

16.
Dentomaxillofac Radiol ; 52(8): 20230066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641889

RESUMO

OBJECTIVE: To develop a novel technique for localizing and reconstructing the greater palatine artery (GPA) using three-dimensional (3D) technology. METHODS: A miniaturized intraoral ultrasound transducer was used to imaging landmarks including the GPA, gingival margin (GM), and palatal masticatory mucosa (PMM). A 5-mm-thick solid hydrogel couplant was integrated to replace traditional ultrasound gel and avoid bubbles when moving the transducer. RESULTS: A panorama image provided the relative localization of landmarks including the GPA, PMM, and hard palate. Short- and long-axis imaging of GPA was performed in five subjects including 3D mapping of GPA branches and surrounding tissues in a volume of 10 mm × 8 mm × 10 mm. Full-mouth Doppler imaging was also demonstrated on both the dorsal and ventral tongue as well as buccal mucosa and sublingual region on two subjects. CONCLUSIONS: This study can measure the vertical distance from the GM to the GPA and depth from PMM to GPA and visualize the GPA localization in a 3D manner, which is critical to evaluate the available volume of palatal donor tissues and avoid sectioning of GPA during surgical harvesting of the tissues. Finally, the transducer's small size facilitates full-mouth Doppler imaging with the potential to improve the assessment, diagnosis, and management of oral mucosa.


Assuntos
Artérias , Palato Duro , Humanos , Artérias/diagnóstico por imagem , Mucosa Bucal , Face
17.
ACS Nano ; 17(17): 17308-17319, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602819

RESUMO

We report the reversible aggregation of silver nanoparticle (AgNP) assemblies using the combination of a cationic arginine-based peptide and sulfur-capped polyethylene glycol (PEG). The formation and dissociation of the aggregates were studied by optical methods and electron microscopy. The dissociation of silver clusters depends on the peptide sequence and PEG size. A molecular weight of 1 kDa for PEG was optimal for the dissociation. The most important feature of this dissociation method is that it can operate in complex biofluids such as plasma, saliva, bile, urine, cell media, or even seawater without a significant decrease in performance. Moreover, the peptide-particle assemblies are highly stable and do not degrade (or express of loss of signal upon dissociation) when dried and resolubilized, frozen and thawed, or left in daylight for a month. Importantly, the dissociation capacity of PEG can be reduced via the conjugation of a peptide-cleavable substrate. The dissociation capacity is restored in the presence of an enzyme. Based on these findings, we designed a PEG-peptide hybrid molecule specific to the Porphyromonas gingivalis protease RgpB. Our motivation was that this bacterium is a key pathogen in periodontitis, and RgpB activity has been correlated with chronic diseases including Alzheimer's disease. The RgpB limit of detection was 100 pM RgpB in vitro. This system was used to measure RgpB in gingival crevicular fluid (GCF) samples with a detection rate of 40% with 0% false negatives versus PCR for P. gingivalis (n = 37). The combination of PEG-peptide and nanoparticles dissociation method allows the development of convenient protease sensing that can operate independently of the media composition.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Porphyromonas gingivalis , Prata , Polímeros , Endopeptidases , Peptídeos , Polietilenoglicóis
18.
J Bacteriol ; 194(7): 1837, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22408240

RESUMO

Gram-negative Aggregatibacter actinomycetemcomitans can be distinguished (based on the promoter structure of the leukotoxin operon) into JP2 and non-JP2 genotypes, with the former found to be more pathogenic than the latter. Here we report the first complete genome sequence of a serotype b non-JP2 strain of A. actinomycetemcomitans.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Genoma Bacteriano , Periodonto/microbiologia , Aggregatibacter actinomycetemcomitans/classificação , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Sequência de Bases , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia
19.
Pathogens ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145469

RESUMO

Aggregatibacter actinomycetemcomitans is a periodontal pathogen associated with periodontitis. This species exhibits substantial variations in gene content among different isolates and has different virulence potentials. This study examined the distribution of genomic islands and their insert sites among genetically diverse A. actinomycetemcomitans strains by comparative genomic analysis. The results showed that some islands, presumably more ancient, were found across all genetic clades of A. actinomycetemcomitans. In contrast, other islands were specific to individual clades or a subset of clades and may have been acquired more recently. The islands for the biogenesis of serotype-specific antigens comprise distinct genes located in different loci for serotype a and serotype b-f strains. Islands that encode the same cytolethal distending toxins appear to have been acquired via distinct mechanisms in different loci for clade b/c and for clade a/d/e/f strains. The functions of numerous other islands remain to be elucidated. JP2 strains represent a small branch within clade b, one of the five major genetic clades of A. actinomycetemcomitans. In conclusion, the complex process of genomic island acquisition, deletion, and modification is a significant force in the genetic divergence of A. actinomycetemcomitans. Assessing the genetic distinctions between JP2 and non-JP2 strains must consider the landscape of genetic variations shaped by evolution.

20.
Photoacoustics ; 28: 100408, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36204181

RESUMO

Periodontitis is a public issue and imaging periodontal pocket is important to evaluate periodontitis. Regular linear transducers have limitations in imaging the posterior teeth due to their geometry restrictions. Here we characterized a transducer that can image the posterior teeth including assessment of periodontal pockets via a combination of photoacoustic and ultrasound imaging. Unlike conventional transducer design, this device has a toothbrush-shaped form factor with a side-view transducer to image molars (total size: 1 ×1.9 cm). A laser diode was integrated as the light source to reduce the cost and size and facilitates clinical transition. The in vivo imaging of a molar of a periodontal patient demonstrated that the transducer could image in the posterior area of gum in vivo; the value determined by imaging was within 7 % of the value measured clinically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA