Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 115990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262090

RESUMO

Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.


Assuntos
Elementos Radioativos , Metais Pesados , Solo/química , Água , Dióxido de Carbono/metabolismo , Metais Pesados/metabolismo , Carbonatos , Carbonato de Cálcio/química , Precipitação Química
2.
Ecotoxicol Environ Saf ; 173: 452-460, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30798189

RESUMO

Although laccase is involved in the biotransformation of 2,4,6-trinitrotoluene (TNT), little is known regarding the effect of E. coli laccase on TNT biotransformation. In this study, E. coli K12 served as the parental strain to construct a laccase deletion strain and two laccase-overexpressing strains. These E. coli strains were used to investigate the effect of laccase together with copper ions on the efficiency of TNT biotransformation, the variety of TNT biotransformation products generated and the toxicity of the TNT metabolites. The results showed that the laccase level was not relevant to TNT biotransformation in the soluble fraction of the culture medium. Conversely, TNT metabolites varied in the insoluble fraction analyzed by thin-layer chromatography (TLC). The insoluble fraction from the laccase-null strain showed fewer and relatively fainter spots than those detected in the wild-type and laccase-overexpressing strains, indicating that laccase expression levels were interrelated determinants of the varieties and amounts of TNT metabolites produced. In addition, the aquatic invertebrate Tigriopus japonicus was used to assess the toxicity of the TNT metabolites. The toxicity of the TNT metabolite mixture increased when the intracellular laccase level in strains increased or when purified E. coli recombinant Laccase (rLaccase) was added to the culture medium. Thus, our results suggest that laccase activity must be considered when performing microbial TNT remediation.


Assuntos
Proteínas de Bactérias/metabolismo , Copépodes/efeitos dos fármacos , Cobre/farmacologia , Escherichia coli/metabolismo , Lacase/metabolismo , Trinitrotolueno/toxicidade , Animais , Proteínas de Bactérias/genética , Biotransformação , Cromatografia em Camada Fina , Escherichia coli/genética , Trinitrotolueno/metabolismo
3.
Int J Med Microbiol ; 307(8): 521-532, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919098

RESUMO

The alternative transcription factor σB in Bacillus cereus governs the transcription of a number of genes that confer protection against general stress. This transcription factor is regulated by protein-protein interactions among RsbV, RsbW, σB, RsbY, RsbM and RsbK, all encoded in the sigB cluster. Among these regulatory proteins, RsbV, RsbW and σB comprise a partner-switching mechanism. Under normal conditions, σB remains inactive by associating with anti-sigma factor RsbW, which prevents σB from binding to the core RNA polymerase. During environmental stress, RsbK activates RsbY to hydrolyze phosphorylated RsbV, and the dephosphorylated RsbV then sequesters RsbW to liberate σB from RsbW. Although the σB partner-switching module is thought to be the core mechanism for σB regulation, the actual protein-protein interactions among these three proteins in the cell remain to be investigated. In the current study, we show that RsbW and RsbV form a long-lived complex under transient stress treatment, resulting in high persistent expression of RsbV, RsbW and σB from mid-log phase to stationary phase. Full sequestration of RsbW by excess RsbV and increased RsbW:RsbV complex stability afforded by cellular ADP contribute to the prolonged activation of σB. Interestingly, the high expression levels of RsbV, RsbW and σB were dramatically decreased beginning from the transition stage to the stationary phase. Thus, protein interactions among σB partner-switching components are required for the continued induction of σB during environmental stress in the log phase and significant down-regulation of σB is observed in the stationary phase. Our data show that σB is temporally regulated in B. cereus.


Assuntos
Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas
4.
Int J Mol Sci ; 17(7)2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27409615

RESUMO

The bacterial-induced hollow cylinder NiO (HCNiO) nanomaterial was utilized for the enzymeless (without GOx) detection of glucose in basic conditions. The determination of glucose in 0.05 M NaOH solution with high sensitivity was performed using cyclic voltammetry (CV) and amperometry (i-t). The fundamental electrochemical parameters were analyzed and the obtained values of diffusion coefficient (D), heterogeneous rate constant (ks), electroactive surface coverage (Г), and transfer coefficient (alpha-α) are 1.75 × 10(-6) cm²/s, 57.65 M(-1)·s(-1), 1.45 × 10(-10) mol/cm², and 0.52 respectively. The peak current of the i-t method shows two dynamic linear ranges of calibration curves 0.2 to 3.5 µM and 0.5 to 250 µM for the glucose electro-oxidation. The Ni(2+)/Ni(3+) couple with the HCNiO electrode and the electrocatalytic properties were found to be sensitive to the glucose oxidation. The green chemistry of NiO preparation from bacteria and the high catalytic ability of the oxyhydroxide (NiOOH) is the good choice for the development of a glucose sensor. The best obtained sensitivity and limit of detection (LOD) for this sensor were 3978.9 µA mM(-1)·cm(-2) and 0.9 µM, respectively.


Assuntos
Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Glucose/análise , Nanopartículas Metálicas/química , Níquel/química , Técnicas Biossensoriais/normas , Calibragem , Catálise , Técnicas Eletroquímicas/normas , Eletrodos , Glucose/normas , Cinética , Limite de Detecção , Oxirredução
5.
Ecol Evol ; 14(4): e11268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646006

RESUMO

The cryptic invasion of golden apple snails (Pomacea canaliculata and P. maculata) in Taiwan has caused significant ecological and economical damage over the last few decades, however, their management remains difficult due to inadequate taxonomic identification, complex phylogeny, and limited population genetic information. We aim to understand the current distribution, putative population of origin, genetic diversity, and potential path of cryptic invasion of Pomacea canaliculata and P. maculata across Taiwan to aid in improved mitigation approaches. The present investigation conducted a nationwide survey with 254 samples collected from 41 locations in 14 counties or cities across Taiwan. We identified P. canaliculata and P. maculata based on mitochondrial COI and compared their genetic diversity across Taiwan, as well as other introduced and native countries (based on publicly available COI data) to understand the possible paths of invasion to Taiwan. Based on mitochondrial COI barcoding, sympatric and heterogeneous distributions of invasive P. canaliculata and P. maculata were noted. Our haplotype analysis and mismatch distribution results suggested multiple introductions of P. canaliculata in Taiwan was likely originated directly from Argentina, whereas P. maculata was probably introduced from a single, or a few, introduction event(s) from Argentina and Brazil. Our population genetic data further demonstrated a higher haplotype and genetic diversity for P. canaliculata and P. maculata in Taiwan compared to other introduced regions. Based on our current understanding, the establishment of P. canaliculata and P. maculata is alarming and widespread beyond geopolitical borders, requiring a concerted and expedited national and international invasive species mitigation program.

6.
Heliyon ; 10(8): e29747, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681598

RESUMO

With the progression of civilization, the harmony within nature has been disrupted, giving rise to various ecocidal activities that are evident in every spheres of the earth. These activities have had a profound and far-reaching impact on global health. One significant example of this is the presence of fluoride in groundwater exceeding acceptable limits, resulting in the widespread occurrence of "Fluorosis" worldwide. It is imperative to mitigate the concentration of fluoride in drinking water to meet safety standards. While various defluoridation techniques exist, they often have drawbacks. Biosorption, being a simple, affordable and eco-friendly method, has gained preference for defluoridation. However, its limited commercialization underscores the pressing need for further research in this domain. This comprehensive review article offers a thorough examination of the defluoridation potential of agro-based adsorbents, encompassing their specific chemical compositions and preparation methods. The review presents an in-depth discussion of the factors influencing fluoride biosorption and conducts a detailed exploration of adsorption isotherm and adsorption kinetic models to gain a comprehensive understanding of the nature of the adsorption process. Furthermore, it evaluates the commercial viability through an assessment of regeneration potential and a cost analysis of these agro-adsorbents, with the aim of facilitating the scalability of the defluoridation process. The elucidation of the adsorption mechanism and recommendations for overcoming challenges in large-scale implementation offer a comprehensive outlook on this eco-friendly and sustainable approach to fluoride removal. In summary, this review article equips readers with a lucid understanding of agro-adsorbents, elucidates their ideal conditions for improved performance, offers a more profound insight into the fluoride biosorption mechanism, and introduces the concept of effective spent adsorbent management.

7.
Int J Med Microbiol ; 303(8): 662-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24383075

RESUMO

In this study, the sequence similarity, structure, ferroxidase activity and efficacy in antagonizing oxidative stress of three Dps-like proteins, Dps1, Dps2 and Dps3, encoded by Bacillus cereus were comparatively analyzed. The three Dps-like proteins are homologous to other bacterial Dps proteins that exhibit ferroxidase activity. Both Dps1 and Dps2 have a typical Dps spherical structure, but Dps3 has a unique filamentous structure. Several dps mutant strains were generated to investigate the functional role of dps genes in cell protection. The dps1 null strain was the most labile to oxidative stress in the stationary phase, and the loss of dps2 resulted in greater sensitivity to peroxide exposure compared with the other mutant strains in the log phase. Interestingly, after simultaneous deletion of dps1 and dps2, the survival rate was dramatically reduced by approximately 5 log in the stationary phase. Immunoblotting analysis demonstrated that Dps1 and Dps2 in the wild-type strain were induced by oxidative stress, and Dps3 responded to general stress in the log phase. Constitutively high expression of Dps2 in a perR null mutant and PerR-specific binding of the promoter region of dps2 confirmed Dps2 as a member of the PerR regulon. In addition, the expression of Dps1 and Dps2, absent any stress, was initiated in the log phase and was abundant in the stationary phase, suggesting that the expression of Dps1 and Dps2 was dependent on the bacterial growth stage. In summary, the three Dps proteins conferred cellular protection, particularly from oxidative stress, and were differentially regulated in response to varied stress conditions.


Assuntos
Bacillus cereus/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Ligação a DNA/biossíntese , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Sequência de Aminoácidos , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ceruloplasmina/química , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica , Dados de Sequência Molecular , Peróxidos/toxicidade , Conformação Proteica
8.
J Colloid Interface Sci ; 633: 979-991, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36509040

RESUMO

Adsorption behavior of ranitidine hydrochloride (RT) on a Ca-montmorillonite (SAz-1) was studied in aqueous system through batch experiments. The adsorption kinetics revealed that the equilibrium reached within 0.25 h and the data fitted well to the pseudo-second order kinetic equation (R2 = 0.98). The maximum RT adsorption capacity of SAz-1 was 369.2 mg/g and the adsorption isotherm data followed the Langmuir model (R2 = 0.99). The adsorption of RT and desorption of exchangeable cations from the clay mineral were linearly correlated, suggesting that cation exchange was the dominant mechanism of RT adsorption. The XRD examination of RT-adsorbed SAz-1 samples (unsaturated/saturated) after heating enabled the calculation of RT occupied area in the interlayer of the clay mineral. The results suggested that adsorbed-RT at low loading rate could lay on the internal surfaces in a free style to reduce the basal spacing (d001 value) of SAz-1. When the RT loading rate was increased, a limited surface space enforced more RT molecules to lay in a tilted style and caused interlayer swelling of SAz-1 increasing the d001 value. The trend of rising decomposition temperature of RT with increasing RT loading rates confirmed intercalation of RT molecules in SAz-1. Infrared spectral analysis revealed the participation of amide and furan groups of RT in binding between RT and SAz-1. Thus, this study indicated that SAz-1 is an efficient adsorbent to remove RT from contaminated water, and the chain-like molecular structure of RT could cause an irregular change in the basal spacing of swelling type clay minerals.


Assuntos
Bentonita , Ranitidina , Bentonita/química , Adsorção , Argila , Minerais , Cátions , Água
9.
J Microbiol Methods ; 212: 106809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597775

RESUMO

The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Bactérias Gram-Negativas , Prata/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia
10.
Heliyon ; 9(5): e15919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223715

RESUMO

Heavy metal pollution of water is a burning issue of today's world. Among several strategies involved for heavy metal remediation purpose, biomineralization has shown great potential. Of late, research has been focused on developing effective mineral adsorbents with reduced time and cost consumption. In this present paper, the Biologically-Induced Synthetic Manganese Carbonate Precipitate (BISMCP) was produced based on the biologically-induced mineralization method, employing Sporosarcina pasteurii in aqueous solutions containing urea and MnCl2. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) and BET surface area analyzer. EDX analysis showed the elements in the crystal BISMCP were Mn, C, and O. XRD result of BISMCP determined the crystal structure, which is close to rhodochrosite (MnCO3). Spectral peaks of FTIR at 1641.79 cm-1 confirmed the appearance of C[bond, double bond]O binding, with strong stretching of CO32- in Amide I. From the six kinds of BISMCP produced, sample MCP-6 has the higher specific surface area by BET analysis at 109.01 m2/g, with pore size at 8.76 nm and higher pore volume at 0.178 cm3/g. These specifications will be suitable as an adsorbent for heavy metal removal by adsorption process. This study presents a preliminary analysis of the possibility of BISMCP for heavy metals adsorption using ICP multi-element standard solution XIII (As, Cr, Cd, Cu, Ni, and Zn). BISMCP formed from 0.1 MnCl2 and 30 ml of bacteria volume (MCP-6) produced a better adsorbent material than others concentrations, with the adsorption efficiency of total As at 98.9%, Cr at 97.0%, Cu at 94.7%, Cd at 88.3%, Zn at 48.6%, and Ni at 29.5%. Future work could be examined its efficiency adsorbing individual heavy metals.

11.
Aquat Toxicol ; 264: 106713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866164

RESUMO

With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Biodegradação Ambiental , Ecossistema , Poluentes Químicos da Água/toxicidade , Plantas
12.
Environ Microbiol ; 14(10): 2788-99, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22640257

RESUMO

The alternative transcription factor σ(B) of Bacillus cereus controls the expression of a number of genes that respond to environmental stress. Four proteins encoded in the sigB gene cluster, including RsbV, RsbW, RsbY (RsbU) and RsbK, are known to be essential in the σ(B)-mediated stress response. In the context of stress, the hybrid sensor kinase RsbK is thought to phosphorylate the response regulator RsbY, a PP2C serine phosphatase, leading to the dephosphorylation of the phosphorylated RsbV. The unphosphorylated RsbV then sequesters the σ(B) antagonist, RsbW, ultimately liberating σ(B). The gene arrangement reveals an open reading frame, bc1007, flanked immediately downstream by rsbK within the sigB gene cluster. However, little is known about the function of bc1007. In this study, the deletion of bc1007 resulted in high constitutive σ(B) expression independent of environmental stimuli, indicating that bc1007 plays a role in σ(B) regulation. A bacterial two-hybrid analysis demonstrated that BC1007 interacts directly with RsbK, and autoradiographic studies revealed a specific C(14)-methyl transfer from the radiolabelled S-adenosylmethionine to RsbK when RsbK was incubated with purified BC1007. Our data suggest that BC1007 (RsbM) negatively regulates σ(B) activity by methylating RsbK. Additionally, mutagenic substitution was employed to modify 12 predicted methylation residues in RsbK. Certain RsbK mutants were able to rescue σ(B) activation in a rsbK-deleted bacterial strain, but RsbK(E439A) failed to activate σ(B), and RsbK(E446A) only moderately induced σ(B). These results suggest that Glu439 is the preferred methylation site and that Glu446 is potentially a minor methylation site. Gene arrays of the rsbK orthologues and the neighbouring rsbM orthologues are found in a wide range of bacteria. The regulation of sigma factors through metylation of RsbK-like sensor kinases appears to be widespread in the microbial world.


Assuntos
Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Metilação , Família Multigênica , Mutagênese Sítio-Dirigida , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Deleção de Sequência , Técnicas do Sistema de Duplo-Híbrido
13.
Chem Res Toxicol ; 25(3): 695-705, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22288910

RESUMO

Overexposure to biphenyl amine compounds, which are found in smoke and azo-dyes, is linked to the occurrence of bladder cancer. However, the molecular mechanisms of biphenyl amine compound-induced bladder cancer are still unclear. Many studies have demonstrated that overexpression of cyclooxygenase-2 (COX-2) in neoplastic lesions is associated with carcinogenesis. In this study, we have demonstrated that 2-aminobiphenyl (2-ABP) up-regulated the expression of COX-2 in a dose- and time-dependent manner in TSGH-8301 bladder cancer cells. This 2-ABP-induced COX-2 expression was attenuated by ROS scavenger NAC and NADPH oxidase inhibitors apocynin and DPI. The p22phox subunit of NADPH oxidase, but not p67, and Nox2 was up-regulated by 2-ABP. Knocking down p22phox by siRNA significantly reduced 2-ABP-induced COX-2 expression. Furthermore, 2-ABP also activated the ERK/JNK-AP1 pathways, and this effect was also abolished by NADPH oxidase inhibitors. Blocking the ERK/JNK-AP1 signaling pathways by pharmacological inhibitors attenuated 2-ABP-induced COX-2 expression. Overexpression of the upstream ERK activator MEK1 significantly and consistently increased 2-ABP-mediated COX-2 expression. Transfection of a dominant negative c-Jun mutant, TAM-67, blocked 2-ABP-mediated COX-2 expression, demonstrating that c-Jun was responsible for the transcriptional activation. Taken together, these results demonstrate that 2-ABP induces the carcinogenic factor COX-2 and that this induction is mediated through NADPH oxidase-derived ROS-dependent JNK/ERK-AP-1 pathways.


Assuntos
Compostos de Aminobifenil/toxicidade , Ciclo-Oxigenase 2/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Tinturas para Cabelo , Humanos , NADPH Oxidases/metabolismo , Poluição por Fumaça de Tabaco , Regulação para Cima , Neoplasias da Bexiga Urinária
14.
Int J Mol Sci ; 13(3): 3933-3948, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489190

RESUMO

Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.


Assuntos
Bacillus subtilis/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Glucose/metabolismo , Nitratos/metabolismo , Águas Residuárias/microbiologia , Biomassa , Eletricidade , Eletrodos , Fermentação , Gerenciamento de Resíduos/métodos , Purificação da Água/métodos
15.
Environ Geochem Health ; 34(5): 563-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22580621

RESUMO

Drinking of arsenic (As)-contaminated groundwater has adverse effects on health of millions of people worldwide. This study aimed to determine the degree of severity of As exposure from drinking water in peri-urban Moyna and Ardebok villages, West Bengal, India. Arsenic concentrations in hair, nail and urine samp les of the individuals were determined. Arsenical dermatosis, keratosis and melanosis were investigated through medical evaluation. We have evaluated the association between As exposure from drinking water, and keratosis and melanosis outcomes. The results showed that 82.7 % of the sampled tube wells contain As concentrations above 10 µg/L, while 57.7 % contain As concentrations above 50 µg/L. The hair, nail and urine As concentrations were positively correlated with As concentrations in drinking water. In our study population, we observed a strong association between As concentrations ranging 51-99 µg/L and keratosis and melanosis outcomes, although the probability decreases at higher concentration ranges perhaps due to switching away from the use of As-contaminated tube wells for drinking and cooking purposes. High As concentrations in hair, nail and urine were observed to be associated with the age of the study population. The level of As concentrations in hair, nail and urine samples of the study population indicated the degree of severity of As exposure in the study region.


Assuntos
Arsênio/toxicidade , Exposição Ambiental , Água Subterrânea/análise , Ceratose/induzido quimicamente , Melanose/induzido quimicamente , Dermatopatias/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Adolescente , Adulto , Arsênio/análise , Arsênio/urina , Água Potável/análise , Monitoramento Ambiental , Feminino , Fluorescência , Cabelo/química , Humanos , Índia/epidemiologia , Ceratose/epidemiologia , Masculino , Melanose/epidemiologia , Pessoa de Meia-Idade , Unhas/química , Dermatopatias/epidemiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/urina
16.
J Colloid Interface Sci ; 623: 627-636, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35598489

RESUMO

Perfluorooctane sulfonate (PFOS) is a highly persistent contaminant of emerging concern causing harmful effects to human and ecosystem health. In this study, a novel MOF-808 metal-organic framework (MOF) was prepared and evaluated for adsorptive removal of PFOS from aqueous solution. The MOF-808 had high specific surface area (SSA; 1610 m2/g) and was structurally stable in aqueous medium for 7 days under different pH conditions. The MOF-808 reached PFOS adsorption equilibrium within 30 min (at 500 mg/L initial PFOS) and attained the maximum adsorption capacity of 939 mg/g at pH 4.1 - 5.4 (with 50 - 500 mg/L initial PFOS). The PFOS adsorption capacity of MOF-808 was unaffected at pH 2 to 7, but gradually decreased at pH > 7. High SSA, favorable pore size and abundant active adsorption sites on MOF-808 triggered high PFOS adsorption onto the adsorbent. The PFOS adsorption process was endothermic and spontaneous in nature. Electrostatic interaction between the cationic central cluster ([Zr6O4(OH)4]12+) of MOF-808 and PFOS anion was identified as the key mechanism of PFOS adsorption onto MOF-808, as evident from the infrared spectroscopic investigation of the adsorbent. This study suggests that MOF-808 can be considered as a highly efficient adsorbent for PFOS removal from water and warrants future research to evaluate the application and performance of the material under wastewater conditions.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Ácidos Alcanossulfônicos , Ecossistema , Fluorocarbonos , Humanos , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
17.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744290

RESUMO

In this study, expired egg white was used as a template, and a sol-gel method was employed to prepare pure-phase TiO2 nano-powder and mixed-phase powders doped with NaF and NaI. The influences of different calcination temperatures, doping elements, and doping amounts during the preparation process on the photocatalytic performance and activity of the prepared TiO2 powders were studied. The results of the experiments showed that the F-doped TiO2 had the highest photocatalytic activity when the doping amount was 1.2%, as examined by EDS, where the sintering temperature was 500 °C. F-doped TiO2 nanoparticles were also synthesized by the sol-gel method using tetrabutyl titanate and NaF mixed with expired egg white protein as the precursor. The F-TiO2 photocatalyst was characterized using FE-SEM, HR-TEM, EDS, XPS, and UV-Vis, and the photocatalytic activity was evaluated by photodegradation of methylene blue under visible light. The results showed that doping with F reduced the energy band gap (3.04 eV) of TiO2, thereby increasing the photocatalytic activity in the visible-light region. The visible-light wavelength range and photocatalytic activity of the catalyst were also affected by the doping amount.

18.
Mar Pollut Bull ; 181: 113905, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839665

RESUMO

Heavy metals (HM) are the major proximate drivers of pollution in the mangrove ecosystem. Therefore, ecological risk (ER) due to HM distribution/concentration in core-sediment of Puzi mangrove region (Taiwan) was examined with tidal influence (TI) along with indigenous rhizospheric bacteria (IRB). The HM concentration was observed higher at active-tidal-sediment compared to partially-active-sediment. Geo-accumulation index (Igeo) and contamination factor (CF) indicated the tidal-sediment was highly contaminated with arsenic (As) and moderately contaminated with Lead (Pb) and Zinc (Zn). However, the pollution loading index (PLI) and degree of contamination (Cd) exhibited 'no pollution' and 'low-moderate degree of contamination', in the studied region respectively. The isolated IRB (Priestia megaterium, Bacillus safenis, Bacillus aerius, Bacillus subtilis, Bacillus velenzenesis, Bacillus lichenoformis, Kocuria palustris, Enterobacter hormaechei, Pseudomonus fulva, and Paenibacillus favisporus; accession number OM979069-OM979078) exhibited the arsenic resistant behavior with plant-growth-promoting characters (IAA, NH3, and P-solubilization), which can be used in mangrove reforestation and bioremediation of HM.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
J Mater Chem B ; 11(1): 10-32, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484467

RESUMO

The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.


Assuntos
Ciência Ambiental , Nanopartículas Metálicas , Humanos , Química Verde/métodos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Metais , Óxidos
20.
AoB Plants ; 14(4): plac031, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35990516

RESUMO

Environmental DNA (eDNA) analysis has recently transformed and modernized biodiversity monitoring. The accurate detection, and to some extent quantification, of organisms (individuals/populations/communities) in environmental samples is galvanizing eDNA as a successful cost and time-efficient biomonitoring technique. Currently, eDNA's application to plants remains more limited in implementation and scope compared to animals and microorganisms. This review evaluates the development of eDNA-based methods for (vascular) plants, comparing its performance and power of detection with that of traditional methods, to critically evaluate and advise best-practices needed to innovate plant biomonitoring. Recent advancements, standardization and field applications of eDNA-based methods have provided enough scope to utilize it in conservation biology for numerous organisms. Despite our review demonstrating only 13% of all eDNA studies focus on plant taxa to date, eDNA has considerable environmental DNA has considerable potential for plants, where successful detection of invasive, endangered and rare species, and community-level interpretations have provided proof-of-concept. Monitoring methods using eDNA were found to be equal or more effective than traditional methods; however, species detection increased when both methods were coupled. Additionally, eDNA methods were found to be effective in studying species interactions, community dynamics and even effects of anthropogenic pressure. Currently, elimination of potential obstacles (e.g. lack of relevant DNA reference libraries for plants) and the development of user-friendly protocols would greatly contribute to comprehensive eDNA-based plant monitoring programs. This is particularly needed in the data-depauperate tropics and for some plant groups (e.g., Bryophytes and Pteridophytes). We further advocate to coupling traditional methods with eDNA approaches, as the former is often cheaper and methodologically more straightforward, while the latter offers non-destructive approaches with increased discrimination ability. Furthermore, to make a global platform for eDNA, governmental and academic-industrial collaborations are essential to make eDNA surveys a broadly adopted and implemented, rapid, cost-effective and non-invasive plant monitoring approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA