Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell ; 134(2): 329-40, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662547

RESUMO

Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.


Assuntos
Montagem e Desmontagem da Cromatina , Ritmo Circadiano , Sirtuínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Expressão Gênica , Histonas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Regiões Promotoras Genéticas , Sirtuína 1 , Sirtuínas/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 43(1): 3-5, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21726804

RESUMO

Compelling evidence suggests that metabolic pathways are coordinated through reversible acetylation of metabolic enzymes in response to nutrient availability. In this issue of Molecular Cell, Jiang et al. (2011) show that the rate-limiting enzyme in gluconeogenesis, phosphoenolpyruvate carboxykinase 1, is regulated through reversible acetylation by SIRT2 and p300.

3.
Curr Opin Hematol ; 23(4): 318-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26945277

RESUMO

PURPOSE OF REVIEW: Cell-cycle checkpoints are surveillance mechanisms in eukaryotic cells that monitor the condition of the cell, repair cellular damages, and allow the cell to progress through the various phases of the cell cycle when conditions become favorable. We review recent advances in hematopoietic stem cell (HSC) biology, highlighting a mitochondrial metabolic checkpoint that is essential for HSCs to return to the quiescent state. RECENT FINDINGS: As quiescent HSCs enter the cell cycle, mitochondrial biogenesis is induced, which is associated with increased mitochondrial protein folding stress and mitochondrial oxidative stress. Mitochondrial unfolded protein response and mitochondrial oxidative stress response are activated to alleviate stresses and allow HSCs to exit the cell cycle and return to quiescence. Other mitochondrial maintenance mechanisms include mitophagy and asymmetric segregation of aged mitochondria. SUMMARY: Because loss of HSC quiescence results in the depletion of the HSC pool and compromised tissue regeneration, deciphering the molecular mechanisms that regulate the mitochondrial metabolic checkpoint in HSCs will increase our understanding of hematopoiesis and how it becomes dysregulated under pathological conditions and during aging. More broadly, this knowledge is instrumental for understanding the maintenance of cells that convert between quiescence and proliferation to support their physiological functions.


Assuntos
Pontos de Checagem do Ciclo Celular , Senescência Celular , Metabolismo Energético , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Animais , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Mitofagia , Estresse Oxidativo , Transdução de Sinais , Resposta a Proteínas não Dobradas
4.
Nature ; 456(7219): 269-73, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18849969

RESUMO

During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.


Assuntos
Jejum/fisiologia , Gluconeogênese/fisiologia , Acetilação , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Transformada , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Resveratrol , Sirtuína 1 , Sirtuínas/genética , Sirtuínas/metabolismo , Estilbenos/farmacologia , Transativadores/metabolismo , Fatores de Transcrição , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
5.
Anal Chem ; 85(5): 2882-90, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23363036

RESUMO

Post-translational modifications play a critical role in regulating protein function. Increasingly, determination of protein identity, estimation of abundance, and characterization of post-translational modifications are required for analysis of protein-mediated cell signaling networks. As such, we report an integrated and rapid multispectral immunoprobed isoelectric focusing technique for identifying specific proteins bearing post-translational modifications. Immunoprobed isoelectric focusing is composed of isoelectric focusing in a large pore-size polyacrylamide gel to determine protein pI followed by immobilization of pI-resolved proteins. Proteins are immobilized via covalent attachment to a channel-filling benzophenone-functionalized polyacrylamide gel via brief UV exposure (photoblot), followed by multispectral antibody-based detection. The assay correlates observed post-translational modifications to pI shifts relative to the unmodified protein of interest. During the electrokinetically driven antibody probing stage, we observed nonuniform electrophoretic probe mobility along the channel axis. The spatially varying mobility is attributed to nonuniform charge arising from covalent attachment of ampholytes to the benzophenone-functionalized gel matrix during the photoblotting step. Using the multistep microfluidic assay, phosphorylated and acetylated forms of heat shock protein 27 and superoxide dismutase 2 were detected, respectively. The assay reported protein isoforms in immune-purified sample and raw cell lysate in 2 hours with sample volume requirements of 2 µL. This new assay is well-matched to systems biology frameworks for study of protein post-translational modifications.


Assuntos
Imunoensaio/instrumentação , Focalização Isoelétrica/instrumentação , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Acetilação , Resinas Acrílicas/química , Animais , Anticorpos/imunologia , Benzofenonas/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Proteínas Imobilizadas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Proteínas/química , Proteínas/imunologia , Superóxido Dismutase/química , Superóxido Dismutase/imunologia , Superóxido Dismutase/metabolismo
6.
Trends Cell Biol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37919163

RESUMO

Stem cells persist throughout the lifespan to repair and regenerate tissues due to their unique ability to self-renew and differentiate. Here we reflect on the recent discoveries in stem cells that highlight a mitochondrial metabolic checkpoint at the restriction point of the stem cell cycle. Mitochondrial activation supports stem cell proliferation and differentiation by providing energy supply and metabolites as signaling molecules. Concomitant mitochondrial stress can lead to loss of stem cell self-renewal and requires the surveillance of various mitochondrial quality control mechanisms. During aging, a mitochondrial protective program mediated by several sirtuins becomes dysregulated and can be targeted to reverse stem cell aging and tissue degeneration, giving hope for targeting the mitochondrial metabolic checkpoint for treating tissue degenerative diseases.

7.
Cell Metab ; 35(6): 996-1008.e7, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146607

RESUMO

Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.


Assuntos
Hipocampo , Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Envelhecimento/fisiologia , Resposta a Proteínas não Dobradas , Proliferação de Células
8.
Cell Rep ; 41(11): 111803, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516757

RESUMO

Nonalcoholic fatty liver disease (NAFLD) can be ameliorated by calorie restriction, which leads to the suppressed somatotroph axis. Paradoxically, the suppressed somatotroph axis is associated with patients with NAFLD and is correlated with the severity of fibrosis. How the somatotroph axis becomes dysregulated and whether the repressed somatotroph axis impacts liver damage during the progression of NAFLD are unclear. Here, we identify a regulatory branch of the hepatic integrated stress response (ISR), which represses the somatotroph axis in hepatocytes through ATF3, resulting in enhanced cell survival and reduced cell proliferation. In mouse models of NAFLD, the ISR represses the somatotroph axis, leading to reduced apoptosis and inflammation but decreased hepatocyte proliferation and exacerbated fibrosis in the liver. NAD+ repletion reduces the ISR, rescues the dysregulated somatotroph axis, and alleviates NAFLD. These results establish that the hepatic ISR suppresses the somatotroph axis to control cell fate decisions and liver damage in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Somatotrofos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia
9.
Biochim Biophys Acta ; 1804(8): 1576-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19782772

RESUMO

The beneficial effects of calorie restriction diet in extending lifespan and preventing diseases have long been recognized. Recent genetic and molecular studies in model organisms began to uncover the molecular regulation of calorie restriction response, with the gene SIR2 playing an essential role. This article summarizes the latest development on how mammalian SIR2 homologs coordinately regulate the calorie restriction response.


Assuntos
Restrição Calórica , Longevidade/fisiologia , Sirtuínas/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Humanos , Inflamação/metabolismo , Longevidade/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/prevenção & controle , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Sirtuínas/genética
10.
Cell Metab ; 33(7): 1274-1275, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34233170

RESUMO

Numerous preclinical studies implicate the decline in NAD+ signaling in developing aging- and obesity-associated metabolic disorders. Yoshino et al. (2021) now provide the clinical evidence that an NAD+ booster increases muscle insulin sensitivity in postmenopausal prediabetic women, validating the therapeutic promises of NAD+ boosters in humans.


Assuntos
Resistência à Insulina , Estado Pré-Diabético , Envelhecimento , Feminino , Humanos , Músculos , NAD
11.
Curr Stem Cell Rep ; 6(4): 119-125, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33777658

RESUMO

PURPOSE OF REVIEW: Diet has profound impacts on health and longevity. Evidence is emerging to suggest that diet impinges upon the metabolic pathways in tissue-specific stem cells to influence health and disease. Here, we review the similarities and differences in the metabolism of stem cells from several tissues, and highlight the mitochondrial metabolic checkpoint in stem cell maintenance and aging. We discuss how diet engages the nutrient sensing metabolic pathways and impacts stem cell maintenance. Finally, we explore the therapeutic implications of dietary and metabolic regulation of stem cells. RECENT FINDINGS: Stem Cell transition from quiescence to proliferation is associated with a metabolic switch from glycolysis to mitochondrial OXPHOS and the mitochondrial metabolic checkpoint is critically controlled by the nutrient sensors SIRT2, SIRT3, and SIRT7 in hematopoietic stem cells. Intestine stem cell homeostasis during aging and in response to diet is critically dependent on fatty acid metabolism and ketone bodies and is influenced by the niche mediated by the nutrient sensor mTOR. SUMMARY: Nutrient sensing metabolic pathways critically regulate stem cell maintenance during aging and in response to diet. Elucidating the molecular mechanisms underlying dietary and metabolic regulation of stem cells provides novel insights for stem cell biology and may be targeted therapeutically to reverse stem cell aging and tissue degeneration.

12.
Mech Ageing Dev ; 188: 111254, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32343979

RESUMO

Stem cell aging contributes to aging-associated tissue degeneration and dysfunction. Recent studies reveal a mitochondrial metabolic checkpoint that regulates stem cell quiescence and maintenance, and dysregulation of the checkpoint leads to functional deterioration of aged stem cells. Here, we present the evidence supporting the mitochondrial metabolic checkpoint regulating stem cell aging and demonstrating the feasibility to target this checkpoint to reverse stem cell aging. We discuss the mechanisms by which mitochondrial stress leads to stem cell deterioration. We speculate the therapeutic potential of targeting the mitochondrial metabolic checkpoint for rejuvenating aged stem cells and improving aging tissue functions.


Assuntos
Senescência Celular , Mitocôndrias/metabolismo , Rejuvenescimento , Células-Tronco/citologia , Animais , Proliferação de Células , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Fenótipo , Dobramento de Proteína , Sirtuína 2/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo
13.
Cell Metab ; 31(3): 580-591.e5, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032542

RESUMO

It is well documented that the rate of aging can be slowed, but it remains unclear to which extent aging-associated conditions can be reversed. How the interface of immunity and metabolism impinges upon the diabetes pandemic is largely unknown. Here, we show that NLRP3, a pattern recognition receptor, is modified by acetylation in macrophages and is deacetylated by SIRT2, an NAD+-dependent deacetylase and a metabolic sensor. We have developed a cell-based system that models aging-associated inflammation, a defined co-culture system that simulates the effects of inflammatory milieu on insulin resistance in metabolic tissues during aging, and aging mouse models; and demonstrate that SIRT2 and NLRP3 deacetylation prevent, and can be targeted to reverse, aging-associated inflammation and insulin resistance. These results establish the dysregulation of the acetylation switch of the NLRP3 inflammasome as an origin of aging-associated chronic inflammation and highlight the reversibility of aging-associated chronic inflammation and insulin resistance.


Assuntos
Envelhecimento/patologia , Inflamassomos/metabolismo , Inflamação/patologia , Resistência à Insulina , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Doença Crônica , Modelos Animais de Doenças , Glucose/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Hipernutrição/patologia , Peptídeos/química , Sirtuína 2/metabolismo
14.
Trends Cell Biol ; 29(7): 563-568, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31030975

RESUMO

Emerging evidence indicates that epigenetic regulators are critically required for the maintenance of tissue-specific stem cells and that the epigenetic marks are altered in stem cells during physiological aging. Intriguingly, aging-associated stem cell functional decline can be reversed by manipulating epigenetic factors that become dysregulated during aging. These observations lend support to the stem cell theory of aging, which postulates that aging is the result of the inability of tissue-specific stem cells to replenish the tissues with functional differentiated cells that maintain the function of a tissue, and open a new era of research on the epigenetics of stem cell aging that may represent therapeutic potential. Recent advances in single cell technologies are revolutionizing our mechanistic understanding of rare populations of cells, such as stem cells, and offer an unprecedented opportunity to address this challenge.


Assuntos
Senescência Celular/genética , Epigênese Genética/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Humanos , Análise de Célula Única
15.
Cell Rep ; 26(4): 945-954.e4, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30673616

RESUMO

Aging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD+-dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously. With age, reduced SIRT2 expression and increased mitochondrial stress lead to aberrant activation of the NLRP3 inflammasome in HSCs. SIRT2 overexpression, NLRP3 inactivation, or caspase 1 inactivation improves the maintenance and regenerative capacity of aged HSCs. These results suggest that mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome is a reversible driver of the functional decline of HSC aging and highlight the importance of inflammatory signaling in regulating HSC aging.


Assuntos
Senescência Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Inflamassomos/imunologia , Mitocôndrias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Estresse Fisiológico/imunologia , Animais , Senescência Celular/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Sirtuína 2/genética , Sirtuína 2/imunologia , Estresse Fisiológico/genética
16.
Aging (Albany NY) ; 11(22): 9971-9981, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31770722

RESUMO

An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and consumer companies made aging research a priority and are building internal expertise, integrating aging research into traditional business models and exploring new go-to-market strategies. Many of these efforts are spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the annual conference series titled "Aging Research and Drug Discovery (ARDD)" held in the capital of the pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases. The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.


Assuntos
Envelhecimento , Descoberta de Drogas , Pesquisa , Indústria Farmacêutica , Humanos
17.
Trends Mol Med ; 13(2): 64-71, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17207661

RESUMO

Calorie restriction (CR) extends lifespan in a wide variety of species and mitigates diseases of aging in mammals. Here, we describe the evidence that the silent information regulator 2 (SIR2) gene, which encodes a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, regulates lifespan and mediates CR in lower species such as Saccharomyces cerevisiae and Caenorhabditis elegans. We discuss the emerging roles of mammalian SIR2 homologs in regulating physiological changes triggered by CR and their potential connections to diseases of aging. We conclude with the recent advances on small molecules that activate the enzymatic activity of SIR2 as potential CR mimetics. The SIR2 family represents an evolutionarily conserved lifespan regulator. Modulating the activity of SIR2 might provide effective CR mimetics to combat diseases of aging.


Assuntos
Restrição Calórica , Sirtuínas/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Inibidores Enzimáticos/farmacologia , Humanos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Síndrome Metabólica/etiologia , Modelos Biológicos , Degeneração Neural/etiologia , Resveratrol , Saccharomyces cerevisiae/fisiologia , Sirtuínas/efeitos dos fármacos , Estilbenos/farmacologia
18.
Aging Cell ; 17(3): e12756, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575576

RESUMO

The mitochondrial unfolded protein response (UPRmt ), a cellular protective program that ensures proteostasis in the mitochondria, has recently emerged as a regulatory mechanism for adult stem cell maintenance that is conserved across tissues. Despite the emerging genetic evidence implicating the UPRmt in stem cell maintenance, the underlying molecular mechanism is unknown. While it has been speculated that the UPRmt is activated upon stem cell transition from quiescence to proliferation, the direct evidence is lacking. In this study, we devised three experimental approaches that enable us to monitor quiescent and proliferating hematopoietic stem cells (HSCs) and provided the direct evidence that the UPRmt is activated upon HSC transition from quiescence to proliferation, and more broadly, mitochondrial integrity is actively monitored at the restriction point to ensure metabolic fitness before stem cells are committed to proliferation.


Assuntos
Envelhecimento/genética , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Humanos , Camundongos
19.
Trends Endocrinol Metab ; 28(6): 449-460, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314502

RESUMO

The simplicity and effectiveness of calorie restriction (CR) in lifespan and healthspan extension have fascinated generations searching for the Fountain of Youth. CR reduces levels of oxidative stress and damage, which have been postulated in the free radical theory of aging as a major cause of aging and diseases of aging. This reduction has long been viewed as a result of passive slowing of metabolism. Recent advances in nutrient sensing have provided molecular insights into the oxidative stress response and suggest that CR triggers an active defense program involving a cascade of molecular regulators to reduce oxidative stress. Physiological studies have provided strong support for oxidative stress in the development of aging-associated conditions and diseases but have also revealed the surprising requirement for oxidative stress to support normal physiological functions and, in some contexts, even slow aging and prevent the progression of cancer. Deciphering the molecular mechanisms and physiological implications of the oxidative stress response during CR will increase our understanding of the basic biology of aging and pave the way for the design of CR mimetics to improve healthspan.


Assuntos
Estresse Oxidativo/fisiologia , Animais , Restrição Calórica , Humanos , Oxirredução
20.
J Gerontol A Biol Sci Med Sci ; 72(11): 1492-1500, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498894

RESUMO

Death from chronic lung disease is increasing and chronic obstructive pulmonary disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization, and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as life span. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate data sets that describe the genomics, transcriptomics, epigenomics, metabolomics, and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor.


Assuntos
Envelhecimento/fisiologia , Pneumopatias/terapia , Humanos , Pneumopatias/fisiopatologia , Metabolômica/métodos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA