Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mycol Case Rep ; 43: 100620, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38533460

RESUMO

Muyocopron laterale is a type of endophytic fungus that parasitizes monocotyledonous plants. Cases of humans and other mammals being infected by M. laterale are very rare around the world. We report the first case of subcutaneous mycosis caused by M. laterale in China. A kidney transplant recipient was admitted for Pneumocystis carinii pneumonia and subsequently developed left calf redness and swelling due to a M. laterale infection. The patient was treated with sulfamethoxazole and voriconazole and underwent five surgical debridements and vacuum sealing drainage (VSD) applications with the left leg. The patient was eventually cured and discharged from the hospital.

2.
Int J Biol Macromol ; 260(Pt 1): 129339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218287

RESUMO

Glyphodes pyloalis (Lepidoptera: Pyralidae) is one of the major pests in mulberry production in China, which has developed resistance to various insecticides. Chemoreception is one of the most crucial physiological tactics in insects, playing a pivotal role in recognizing chemical stimuli in the environment, including noxious stimuli such as insecticides. Herein, we obtained recombinant pheromone-binding protein 1 (GpylPBP1) that exhibited antennae-biased expression in G. pyloalis. Ligand-binding assays indicated that GpylPBP1 had the binding affinities to two organophosphorus insecticides, with a higher binding affinity to chlorpyrifos than to phoxim. Computational simulations showed that a mass of nonpolar amino acid residues formed the binding pocket of GpylPBP1 and contributed to the hydrophobic interactions in the bindings of GpylPBP1 to both insecticides. Furthermore, the binding affinities of three GpylPBP1 mutants (F12A, I52A, and F118A) to both insecticides were all significantly reduced compared to those of the GpylPBP1-wild type, suggesting that Phe12, Ile52, and Phe118 residues were crucial binding sites and played crucial roles in the bindings of GpylPBP1 to both insecticides. Our findings can be instrumental in elucidating the effects of insecticides on olfactory recognition in moths and facilitating the development of novel pest management strategies using PBPs as targets based on insect olfaction.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/metabolismo , Proteínas de Transporte/metabolismo , Feromônios/metabolismo , Compostos Organofosforados/metabolismo , Mariposas/metabolismo , Proteínas Recombinantes/química , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA