RESUMO
In organic solar cells (OSCs), electron acceptors have undergone multiple updates, from the initial fullerene derivatives, to the later acceptor-donor-acceptor type non-fullerene acceptors (NFAs), and now to Y-series NFAs, based on which efficiencies have reached over 19%. However, the key property responsible for further improved efficiency from molecular structure design is remained unclear. Herein, the material properties are comprehensively scanned by selecting PC71BM, IT-4F, and L8-BO as the representatives for different development stages of acceptors. For comparison, asymmetric acceptor of BTP-H5 with desired loosely bounded excitons is designed and synthesized. It's identified that the reduction of intrinsically exciton binding energy (Eb) and the enhancement of exciton delocalization capability act as the key roles in boosting the performance. Notably, 100 meV reduction in Eb has been observed from PC71BM to BTP-H5, correspondingly, electron-hole pair distance of BTP-H5 is almost two times over PC71BM. As a result, efficiency is improved from 40% of S-Q limit for PC71BM-based OSC to 60% for BTP-H5-based one, which achieves an efficiency of 19.07%, among the highest values for binary OSCs. This work reveals the confirmed function of exciton delocalization capability quantitatively in pushing the efficiency of OSCs, thus providing an enlightenment for future molecular design.
RESUMO
The growth of disorganized lithium dendrites and weak solid electrolyte interphase greatly impede the practical application of lithium metal batteries. Herein, we designed and synthesized a new kind of stable polyimide covalent organic frameworks (COFs), which have a high density of well-aligned lithiophilic quinoxaline and phthalimide units anchored within the uniform one-dimensional channels. The COFs can serve as an artificial solid electrolyte interphase on lithium metal anode, effectively guiding the uniform deposition of lithium ions and inhibiting the growth of lithium dendrites. The unsymmetrical Li||COF-Cu battery exhibits a Coulombic efficiency of 99 % at a current density of 0.5â mA cm-2 , which can be well retained up to 400â cycles. Meanwhile, the Li-COF||LFP full cell shows a Coulombic efficiency over 99 % at a charge of 0.3â C. And its capacity can be well maintained up to 91 % even after 150â cycles. Therefore, the significant electrochemical cycling stability illustrates the feasibility of employing COFs in solving the disordered deposition of lithium ions in lithium metal batteries.
RESUMO
The predesignable porous structure and high structural flexibility of covalent organic frameworks (COFs) render this material desirable as a platform for addressing various cutting-edge issues. Precise control over their composition, topological structure, porosity, and stability to realize tailor-made functionality still remains a great challenge. In this work, we developed a new kind of three-dimensional (3D) carborane-based COF with a 7-fold interpenetrating dia topological diagram. The resulting COFs exhibited high crystallinity, exceptional porosity, and strong robustness. The slightly lower electronegativity of boron (2.04) than that of hydrogen (2.20) can lead to the polarization of the B-H bond into a Bδ+-Hδ- mode, which renders these COFs as high-performance materials for the adsorption and separation of hexane isomers through the B-Hδ-···Hδ+-C interaction. Significantly, the carborane content of obtained COFs reached up to 54.2 wt %, which gets the highest rank among all the reported porous materials. Combining high surface area, strong robustness, and high content of carborane, the obtained COFs can work as efficient adsorbents for the separation of the five hexane isomers with high separation factors. This work not only enhances the diversity of 3D functional COFs but also constitutes a further step toward the efficient separation of alkane isomers.
RESUMO
The development of conductive covalent organic frameworks (COFs) with high stability is desirable for the practical applications in optoelectronics and energy storage. Herein, we developed a new kind of Janus dione-based COF, which is fully sp2 carbon-conjugated through the connection by olefin units. The electrical conductivity and carrier mobility reached up to 10-3 S cm-1 and 7.8 cm2 V-1 s-1, respectively. In addition, these COFs are strongly robust against various harsh conditions. The well-ordered two-dimensional crystalline structures, excellent porosity, high conductivity, and abundant redox-active carbonyl units render these COFs serviceable as high-performance cathode materials in lithium-ion batteries. It is worth noting that TFPPy-ICTO-COF exhibits a capacity of up to 338 mAh g-1 at a discharge rate of 0.1 C, which sets a new capacity record among COF-based lithium-ion batteries. Its capacity retention was as high as 100% even after 1000 cycles, demonstrating the remarkable stability of these Janus dione-based COF materials. This work not only expands the diversity of olefin-linked COFs but also makes a new breakthrough in energy storage.
RESUMO
Fullerenes are among the most commonly used electron-transporting materials (ETMs) in inverted perovskite solar cells (IPSCs). Although versatile functionalized fullerene derivatives have shown excellent performance in IPSCs, pristine [60]fullerene (C60) is still the most widely used in devices mainly because of its uniform morphology by thermal deposition. However, thermally evaporable fullerene derivatives have not yet been achieved. Herein, we developed a series of evaporable fullerene derivatives, referred to as fullerene indanones (FIDOs), affording IPSCs with high power conversion efficiency (PCE) and long-term storage stability. The FIDOs were designed with a unique architecture in which the fullerene moiety and a benzene ring moiety are linked via a five-membered carbon ring in benzene ring plane. This molecular arrangement affords exceptional thermal stability, allowing the FIDOs to withstand harsh thermal deposition conditions. Moreover, by manipulating the steric bulk of the functional groups, we could control the state of the organic film from crystalline to amorphous. Subsequently, we used FIDOs as an electron transport layer (ETL) in IPSCs. Thanks to the suitable energy level and dual-passivation effect of FIDOs compared with a reference ETL using C60, the device using FIDOs achieved an open-circuit voltage of 1.16 V and a fill factor of 0.77. As a result, the PCE reached 22.11%, which is superior to 20.45% of the best-performing reference device. Most importantly, the FIDO-based IPSC devices exhibited exceptional stability in comparison to the reference device due to the stability of the amorphous ETL films.
RESUMO
A new kind of piperazine-linked covalent organic framework (COF) was synthesized through the nucleophilic substitution reaction between octaminophthalocyanines and hexadecafluorophthalocyanines. The two-dimensional (2D) frameworks are in tetragonally shaped polygon sheets, which stack in an AA stacking mode to constitute periodically ordered metallophthalocyanine columns and one-dimensional (1D) microporous channels. The piperazine-linked COFs exhibit excellent chemical stability and permanent porosity. By virtue of the neatly arrayed phthalocyanine columns and inbuilt cationic radicals, the piperazine-linked frameworks are highly conductive. The conductivity values of NiPc-NH-CoPcF8 COF reached up to 2.72 and 12.7 S m-1 for pellet and film samples, respectively. Moreover, this p-type conductive COF exhibited a high carrier mobility of 35.4 cm2 V-1 s-1. Both the electric conductivity and carrier mobility set new records for conductive COFs.
RESUMO
Reticular chemistry allows the control of crystalline frameworks at atomic precision according to the predesigned topological structures. However, only a limited number of topological structures of three-dimensional (3D) covalent organic frameworks (COFs) have been established. In this work, we developed a series of 3D COFs with an unprecedented she topology, which were constructed with D3d- and D4h-symmetric building blocks. The resulting COFs crystallize in a space group of Im3Ì m, in which each D3d unit connects with six D4h units to form a noninterpenetrated network with a uniform pore size of 2.0 nm. In addition, these COFs exhibited high crystallinity, excellent porosity, and good chemical and thermal stability. The crystalline structures, composition, and physicochemical properties of these networks were unambiguously characterized. Notably, the inbuilt porphyrin units render these COFs as efficient catalysts for photoredox C-C bond forming and photocatalytic carbon dioxide reduction reactions. Thus, this work constitutes a new approach for the construction of 3D she-net COFs and also enhances the structural diversity and complexity of COFs.
RESUMO
Organic solar cells (OSCs) show the potential to harness solar energy at a lower cost and in a greener way with the merits of mechanical flexibility and potential low-cost upscaling production with solution processing. Meanwhile, the common use of toxic halogenated solvents causes pollution to the natural environment, and thus, needs to be avoided. Following the authors' previous work on the design of top-illuminated ultrathin Ag-based device structure highlighting most merits of OSC, herein non-halogen solvent and additive processing OSCs are presented, which exhibit high power conversion efficiency (PCE) of 17.64%, close to the best PCE with the commonly used halogen solvent. Interestingly, it is observed that the additive and the multicomponent strategy (blending third component BTP-S2 into PM6:L8-BO binary blend) synergistically affect the optimal morphology and device performance. Finally, OSC devices featuring green solvent processing, indium tin oxide-free, flexibility, and upscaling merits are fabricated and exhibit the best PCE of 13.76% with high mechanical robustness and good stability against heat or light illumination. This work provides a prospective potential for manufacturing the OSC toward practical applications.
RESUMO
The development of highly stable covalent organic frameworks (COFs) is extremely compelling for their implementation in practical application. In this work, we rationally designed and synthesized new kinds of ultrastable bimetallic polyphthalocyanine COFs, which are constructed with the dioxin linkage through the nucleophilic aromatic substitution between octahydroxylphthalocyanine and hexadecafluorophthalocyanine. The resulting bimetallic CuPcF8-CoPc-COF and CuPcF8-CoNPc-COF exhibited strong robustness under harsh conditions. The eclipsed stacking mode of metallophthalocyanine units supplies a high-speed pathway for electron transfer. With these structural advantages, both COFs displayed considerable activity, selectivity, and stability toward electrocatalytic CO2 reduction in an aqueous system. Notably, CuPcF8-CoNPc-COF showed a faradaic efficiency of 97% and an exceptionally high turnover frequency of 2.87 s-1, which is superior to most COF-based electrocatalysts. Furthermore, the catalytic mechanism was well demonstrated by using a theoretical calculation. This work not only expanded the variety of dioxin-linked COFs, but also constituted a new step toward their practical use in carbon cycle.
RESUMO
The poor electrical conductivity of two-dimensional (2D) crystalline frameworks greatly limits their utilization in optoelectronics and sensor technology. Herein, we describe a conductive metallophthalocyanine-based NiPc-CoTAA framework with cobalt(II) tetraaza[14]annulene linkages. The high conjugation across the whole network combined with densely stacked metallophthalocyanine units endows this material with high electrical conductivity, which can be greatly enhanced by doping with iodine. The NiPc-CoTAA framework was also fabricated as thin films with different thicknesses from 100 to 1000â nm by the steam-assisted conversion method. These films enabled the detection of low-concentration gases and exhibited remarkable sensitivity and stability. This study indicates the enormous potential of metallophthalocyanine-based conductive frameworks in advanced stand-off chemical sensors and provides a general strategy through tailor-make molecular design to develop sensitive and stable chemical sensors for the detection of low-concentration gases.
RESUMO
Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.
RESUMO
Bulk-heterojunction (BHJ) blends are commonly used as active materials for optoelectronics. Ordering of molecular packing in blends is critical to their electronic properties, spurring investigation on how to obtain BHJ with long-range ordering. However, the difficulty in controlling crystallization during blending limits the crystallinity. Developing a new strategy instead of conventional blending is, thus, needed. Inspired by biomineralization, here, C60 single-crystals are prepared in organogel matrix of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenvinylene] (MEH-PPV) to form MEH-PPV:C60 composites. Essentially, networks of MEH-PPV are incorporated into growing C60 crystals and penetrate throughout the crystals, resulting in crystal/gel-network interpenetrating composites. Despite the coexistence of MEH-PPV, the C60 crystalline component maintains single-crystallinity and the composite exhibits as BHJ with long-range ordering. Furthermore, compared with blends, the long-range ordered BHJ shows a higher efficiency of charge dissociation and better performance in photodetection, exemplifying the advantage of ordering on organic electronics. Hence, this work provides a new platform to study BHJ with long-range ordering.
RESUMO
Correction for 'Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells' by Wei-Fei Fu et al., Phys. Chem. Chem. Phys., 2013, 15, 17105-17111, DOI: 10.1039/C3CP52723A.
RESUMO
Herein, we investigated a series of fullerene-free organic solar cells (OSCs) based on six different donor:acceptor (D:A) blends with varied highest occupied molecular orbital (HOMO) offsets from -0.05 to 0.21 eV. First, to verify the energetic compatibility of a specific D:A pair, especially for HOMO offsets, we established a simple method to estimate the hole transfer tendencies between D and A by using bilayer hole-only devices. It reveals that the asymmetrical diode effect of the bilayer hole-only devices can correlate with the FF and Jsc of the relevant OSCs. Second, to find out whether HOMO offset is the main restriction of hole transfer, we measured transient absorption spectra and examined the hole transfer behavior in the blends, revealing that the occurrence of hole transfer is independent of the HOMO offsets and ultrafast in the time scale of ≤4.6 ps for those blends with ≥0 eV HOMO offsets. In contrast, a negative HOMO offset can significantly slow down the hole transfer with a half-time of â¼400 ps. Furthermore, we compare the device parameters under varied light intensities and discover that the bimolecular recombination should be one of the main restrictions for high device performance. Surprisingly, small HOMO offsets of 0 and 0.06 eV can also enable high PCEs of 10.42% and 11.75% for blend 2 (PTQ10:HC-PCIC) and blend 3 (PBDB-TF:HC-PCIC), respectively. Overall, our work demonstrates not only the validity of high-performance OSCs operating at the near zero HOMO offsets but also the charge dynamic insights of these blends, which will help gain understanding on the further improvement of OSCs.
RESUMO
Organic heterojunctions are widely used in organic electronics and they are composed of semiconductors interfaced together. Good ordering in the molecular packing inside the heterojunctions is highly desired but it is still challenging to interface organic single crystals to form single-crystalline heterojunctions. Here, we describe how organic heterojunctions are formed by interfacing two single crystals from a droplet of a mixed solution containing two semiconductors. Based on crystallization of six organic semiconductors from a droplet on a substrate, two distinct crystallization mechanisms have been recognized in the sense that crystals form at either the top interface between the air and solution or the bottom interface between the substrate and solution. The preference for one interface rather than the other depends on the semiconductor-substrate pair and, for a given semiconductor, it can be switched by changing the substrate, suggesting that the preference is associated with the semiconductor-substrate molecular interaction. Furthermore, simultaneous crystallization of two semiconductors at two different interfaces to reduce their mutual disturbance results in the formation of bilayer single crystals interfaced together for organic heterojunctions. These single-crystalline heterojunctions exhibit ambipolar charge transport in field-effect transistors, with the highest electron mobility of 1.90 cm2 V-1 s-1 and the highest hole mobility of 1.02 cm2 V-1 s-1. Hence, by elucidating the interfacial crystallization events, this work should greatly harvest the solution-grown organic single-crystalline heterojunctions.
RESUMO
The fabrication of high-quality film with large grains oriented along the direction of film thickness is important for 2D Ruddlesden-Popper perovskite-based solar cells (PVSCs). High-quality 2D BA2 MAn-1 Pbn I3n+1 (BA+ =butylammonium, MA+ =methylammonium, n=5) perovskite films were fabricated with a grain size of over 1â µm and preferential orientation growth by introducing a second spacer cation (SSC+ ) into the precursor solution. Dynamic light scattering showed that SSC+ addition can induce aggregation in the precursor solution. The precursor aggregates are favorable for the formation of large crystal grains by inducing nucleation and decreasing the nucleation sites. Applying phenylethylammonium as SSC+ , the optimized inverted planar PVSCs presented a maximum PCE of 14.09 %, which is the highest value of the 2D BA2 MAn-1 Pbn I3n+1 (n=5) PVSCs. The unsealed device shows good moisture stability by maintaining around 90 % of its initially efficiency after 1000â h exposure to air (Hr=25±5 %).
RESUMO
Ultraviolet-visible-near infrared (UV-Vis-NIR) broadband detection is important for image sensing, communication, and environmental monitoring, yet remains as a challenge in achieving high external quantum efficiency (EQE) in the broad spectrum range. Herein, sensitive broadband integrated photodetectors (PDs) with high EQE levels are reported. The organic bulk-heterojunction (OBHJ) layer, based on a NIR sensitive organic acceptor, is employed to extend the response spectrum of the perovskite PDs. A key strategy of introducing dual electron transport materials respectively for Vis and NIR regions into the active layer of integrated PDs is applied. Further combined with the proper energy level alignment and reasonable distribution of PC61 BM in the active layer, the extraction and transport of photo induced charges in between perovskite and OBHJ is promoted efficiently. The integrated PD with the optimized structure exhibits an EQE mostly beyond 70% in the Vis-NIR region, which is the highest value among the ever reported solution-processable broadband PDs. The highest responsivity is 0.444 and 0.518 A W-1 in the Vis and NIR region, respectively. The specific detectivity is beyond 1010 Jones in the range from 340 to 940 nm, enabling the device to detect weak signals in the UV to NIR broad region.
RESUMO
Fullerene-free OSCs employing n-type small molecules or polymers as the acceptors have recently experienced a rapid rise with efficiencies exceeding 12%. Owing to the good optoelectronic and morphological tunabilities, non-fullerene acceptors exhibit great potential for realizing high-performance and practical OSCs. In this Review, recent exciting progress made in developing highly efficient non-fullerene acceptors is summarized, mainly correlating factors like absorption, energy loss and morphology of new materials to their correspondent photovoltaic performance.
RESUMO
Vertically oriented highly crystalline 2D layered (BA)2 (MA)n-1 Pbn I3n+1 (BA = CH3 (CH2 )3 NH3 , MA = CH3 NH3 , n = 3, 4) perovskite thin-films are fabricated with the aid of ammonium thiocyanate (NH4 SCN) additive through one-step spin-coating process. The humidity-stability of the film is certified by the almost unchanged X-ray diffraction patterns after exposed to humid atmosphere (Hr = 55 ± 5%) for 40 d. The photovoltaic devices with the structure of indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)/(BA)2 (MA)n-1 Pbn I3n+1 (n = 3,4)/[6,6]-phenyl-C61 -butyric acid methyl ester/Bathocuproine/Ag are fabricated. The devices based on (BA)2 (MA)2 Pb3 I10 perovskite (n = 3) with the precursor composition of BAI:methylammonium iodide:PbI2 :NH4 SCN = 2:2:3:1 (by molar ratio) show an averaged power conversion efficiency (PCE) of 6.82%. In the case of (BA)2 (MA)3 Pb4 I13 (n = 4), a higher PCE of 8.79% is achieved. Both of the unsealed devices perform unique stability with almost unchanged PCE during the period of storage in purified N2 glove box. This work provides a simple and effective method to enhance the efficiency of the 2D perovskite solar cell.
RESUMO
Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.