Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164282

RESUMO

Since the revival of multiferroic laminates with giant magnetoelectric (ME) coefficients, a variety of multifunctional ME devices, such as sensor, inductor, filter, antenna etc. have been developed. Magnetoelastic materials, which couple the magnetization and strain together, have recently attracted ever-increasing attention due to their key roles in ME applications. This review starts with a brief introduction to the early research efforts in the field of multiferroic materials and moves to the recent work on magnetoelectric coupling and their applications based on both bulk and thin-film materials. This is followed by sections summarizing historical works and solving the challenges specific to the fabrication and characterization of magnetoelastic materials with large magnetostriction constants. After presenting the magnetostrictive thin films and their static and dynamic properties, we review micro-electromechanical systems (MEMS) and bulk devices utilizing ME effect. Finally, some open questions and future application directions where the community could head for magnetoelastic materials will be discussed.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6167-6170, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892524

RESUMO

A novel magnetoelectric (ME) antenna is fabricated to be integrated to the on-chip energy harvesting circuit for brain-computer interface applications. The proposed ME antenna resonates at the frequency of 2.57 GHz while providing a bandwidth of 3.37 MHz. The proposed rectangular ME antenna wireless power transfer efficiency is 0.304 %, which is considerably higher than that of micro-coils.Clinical Relevance- This provides a suitable energy harvesting efficiency for wirelessly powering up the brain implant devices.


Assuntos
Interfaces Cérebro-Computador , Tecnologia sem Fio , Próteses e Implantes
3.
Adv Mater Technol ; 6(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35558167

RESUMO

Miniaturized piezoelectric/magnetostrictive contour-mode resonators have been shown to be effective magnetometers by exploiting the ΔE effect. With dimensions of ~100-200 µm across and <1 µm thick, they offer high spatial resolution, portability, low power consumption, and low cost. However, a thorough understanding of the magnetic material behavior in these devices has been lacking, hindering performance optimization. This manuscript reports on the strong, nonlinear correlation observed between the frequency response of these sensors and the stress-induced curvature of the resonator plate. The resonance frequency shift caused by DC magnetic fields drops off rapidly with increasing curvature: about two orders of magnitude separate the highest and lowest frequency shift in otherwise identical devices. Similarly, an inverse correlation with the quality factor was found, suggesting a magnetic loss mechanism. The mechanical and magnetic properties are theoretically analyzed using magnetoelastic finite-element and magnetic domain-phase models. The resulting model fits the measurements well and is generally consistent with additional results from magneto-optical domain imaging. Thus, the origin of the observed behavior is identified and broader implications for the design of nano-magnetoelastic devices are derived. By fabricating a magnetoelectric nano-plate resonator with low curvature, a record-high DC magnetic field sensitivity of 5 Hz/nT is achieved.

4.
Nat Commun ; 12(1): 3141, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035237

RESUMO

Ultra-compact wireless implantable medical devices are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission. Moreover, current implantable devices are reliant on differential recording of voltage or current across space and require direct contact between electrode and tissue. Here, we show an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250 × 174 µm2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields. The proposed ME antenna has a wireless PTE 1-2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the SAR limit. Furthermore, the antenna's magnetic field detectivity of 300-500 pT allows the IMDs to record neural magnetic fields.


Assuntos
Eletrodos Implantados , Nanotecnologia/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Desenho de Equipamento , Campos Magnéticos , Camundongos , Modelos Animais , Ratos , Materiais Inteligentes
5.
Analog Integr Circuits Signal Process ; 105(3): 407-415, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34511725

RESUMO

A low-noise amplifier (LNA) topology with tunable input matching and noise cancellation is introduced and described in this paper, which was designed and optimized to interface with a magnetoelectric (ME) antenna in a 0.35 µm MEMS-compatible CMOS process. Compared to conventional antennas, acoustically actuated ME antennas have significantly smaller area for ease of integration. The LNA was simulated with an ME antenna model that was constructed based on antenna measurements. Input matching at the LNA-antenna interface is controlled with a circuit that varies the effective impedance of the gate inductor using a control voltage. Tunability of 455 MHz around 2.4 GHz is achieved for the optimum S11 frequency with a control voltage range of 0.3 V to 1.2 V. The proposed LNA has a noise cancelling feedback loop that improves the noise figure by 4.1 dB. The post-layout simulation results of the LNA show a 1-dB compression point of -7.4 dBm with an S21 of 17.8 dB.

6.
Materials (Basel) ; 12(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337062

RESUMO

The strong strain-mediated magnetoelectric (ME) coupling found in thin-film ME heterostructures has attracted an ever-increasing interest and enables realization of a great number of integrated multiferroic devices, such as magnetometers, mechanical antennas, RF tunable inductors and filters. This paper first reviews the thin-film characterization techniques for both piezoelectric and magnetostrictive thin films, which are crucial in determining the strength of the ME coupling. After that, the most recent progress on various integrated multiferroic devices based on thin-film ME heterostructures are presented. In particular, rapid development of thin-film ME magnetometers has been seen over the past few years. These ultra-sensitive magnetometers exhibit extremely low limit of detection (sub-pT/Hz1/2) for low-frequency AC magnetic fields, making them potential candidates for applications of medical diagnostics. Other devices reviewed in this paper include acoustically actuated nanomechanical ME antennas with miniaturized size by 1-2 orders compared to the conventional antenna; integrated RF tunable inductors with a wide operation frequency range; integrated RF tunable bandpass filter with dual H- and E-field tunability. All these integrated multiferroic devices are compact, lightweight, power-efficient, and potentially integrable with current complementary metal oxide semiconductor (CMOS) technology, showing great promise for applications in future biomedical, wireless communication, and reconfigurable electronic systems.

7.
Nat Commun ; 8(1): 296, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831042

RESUMO

State-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure. These ME antennas receive and transmit electromagnetic waves through the ME effect at their acoustic resonance frequencies. The bulk acoustic waves in ME antennas stimulate magnetization oscillations of the ferromagnetic thin film, which results in the radiation of electromagnetic waves. Vice versa, these antennas sense the magnetic fields of electromagnetic waves, giving a piezoelectric voltage output. The ME antennas (with sizes as small as one-thousandth of a wavelength) demonstrates 1-2 orders of magnitude miniaturization over state-of-the-art compact antennas without performance degradation. These ME antennas have potential implications for portable wireless communication systems.The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

8.
Adv Mater ; 28(42): 9370-9377, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593972

RESUMO

A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 µm that is formed by ferrite magnetic inks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA