Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cryobiology ; 94: 95-99, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304703

RESUMO

Sperm cryopreservation is an essential approach for assisted reproduction and genetic resources conservation in captive giant pandas. Cryopreservation, however, leads to a significant decrease in sperm quality and, consequently, a low fertilization rate. Therefore, it is mandatory to disclose more suitable and efficient freezing strategies for sperm cryopreservation. In the present study, we compared for the first time the performance of two commercial freeze extender (INRA96 versus TEST) freezing methods on post-thawed semen quality. Semen cryopreserved with the INRA96 showed better total motility (73.00 ± 4.84% vs 57.56 ± 3.60%, P < 0.001), membrane integrity (60.92 ± 2.27% vs 40.53 ± 2.97%, P < 0.001) and acrosome integrity (90.39 ± 2.74% vs 84.26 ± 4.27%, P < 0.05) than stored with TEST. There was no significant difference in DNA integrity after thawing between the two extenders (95.69 ± 3.60% vs 94.26 ± 4.84%). In conclusion, the INRA96 method showed to be better for giant panda sperm cryopreservation and should therefore be recommended for use in order to increase success of artificial insemination.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Preservação do Sêmen/métodos , Sêmen , Ursidae , Animais , Masculino , Análise do Sêmen , Espermatozoides/efeitos dos fármacos
2.
Cell Physiol Biochem ; 46(3): 1065-1077, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669315

RESUMO

BACKGROUND/AIMS: Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. METHODS: The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. RESULTS: By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. CONCLUSION: To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen.


Assuntos
Sistema Imunitário/metabolismo , RNA Longo não Codificante/metabolismo , Baço/metabolismo , Transcriptoma , Ursidae/genética , Animais , MicroRNAs/metabolismo , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Ursidae/metabolismo
3.
Comput Biol Med ; 179: 108795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955128

RESUMO

Intervertebral disc disease, a prevalent ailment, frequently leads to intermittent or persistent low back pain, and diagnosing and assessing of this disease rely on accurate measurement of vertebral bone and intervertebral disc geometries from lumbar MR images. Deep neural network (DNN) models may assist clinicians with more efficient image segmentation of individual instances (discs and vertebrae) of the lumbar spine in an automated way, which is termed as instance image segmentation. In this work, we proposed SymTC, an innovative lumbar spine MR image segmentation model that combines the strengths of Transformer and Convolutional Neural Network (CNN). Specifically, we designed a parallel dual-path architecture to merge CNN layers and Transformer layers, and we integrated a novel position embedding into the self-attention module of Transformer, enhancing the utilization of positional information for more accurate segmentation. To further improve model performance, we introduced a new data synthesis technique to create synthetic yet realistic MR image dataset, named SSMSpine, which is made publicly available. We evaluated our SymTC and the other 16 representative image segmentation models on our private in-house dataset and public SSMSpine dataset, using two metrics, Dice Similarity Coefficient and the 95th percentile Hausdorff Distance. The results indicate that SymTC surpasses the other 16 methods, achieving the highest dice score of 96.169 % for segmenting vertebral bones and intervertebral discs on the SSMSpine dataset. The SymTC code and SSMSpine dataset are publicly available at https://github.com/jiasongchen/SymTC.

4.
In Vitro Cell Dev Biol Anim ; 59(7): 550-563, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37639049

RESUMO

Conservation of genetic resources is an important way to protect endangered species. At present, mesenchymal stem cells (MSCs) have been isolated from the bone marrow and umbilical cords of giant pandas. However, the types and quantities of preserved cell resources were rare and limited, and none of MSCs was derived from female reproductive organs. Here, we first isolated MSCs from the endometrium of giant panda. These cells showed fibroblast morphology and expressed Sox2, Klf4, Thy1, CD73, CD105, CD44, CD49f, and CD105. Endometrium mesenchymal stem cells (eMSCs) of giant panda could induce differentiation into three germ layers in vitro. RNA-seq analysis showed that 833 genes were upregulated and 716 genes were downregulated in eMSCs compared with skin fibroblast cells. The results of GO and the KEGG analysis of differentially expressed genes (DEGs) were mainly focused on transporter activity, signal transducer activity, pathways regulating pluripotency of stem cells, MAPK signaling pathway, and PI3K-Akt signaling pathway. The genes PLCG2, FRK, JAK3, LYN, PIK3CB, JAK2, CBLB, and MET were identified as hub genes by PPI network analysis. In addition, the exosomes of eMSCs were also isolated and identified. The average diameter of exosomes was 74.26 ± 13.75 nm and highly expressed TSG101 and CD9 but did not express CALNEXIN. A total of 277 miRNAs were detected in the exosomes; the highest expression of miRNA was the has-miR-21-5p. A total of 14461 target genes of the whole miRNAs were predicted and proceeded with functional analysis. In conclusion, we successfully isolated and characterized the giant panda eMSCs and their exosomes, and analyzed their functions through bioinformatics techniques. It not only enriched the conservation types of giant panda cell resources and promoted the protection of genetic diversity, but also laid a foundation for the application of eMSCs and exosomes in the disease treatment of giant pandas.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ursidae , Feminino , Animais , Ursidae/genética , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Endométrio/metabolismo
5.
Conserv Physiol ; 10(1): coac004, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35211318

RESUMO

Endometrial mesenchymal stem cells (eMSCs) are undifferentiated endometrial cells with self-renewal, multidirectional differentiation and high proliferation potential. Nowadays, eMSCs have been found in a few species, but it has never been reported in endangered wild animals, especially the red panda. In this study, we successfully isolated and characterized the eMSCs derived from red panda. Red panda eMSCs were fibroblast-like, had a strong proliferative potential and a stable chromosome number. Pluripotency genes including Klf4, Sox2 and Thy1 were highly expressed in eMSCs. Besides, cultured eMSCs were positive for MSC markers CD44, CD49f and CD105 and negative for endothelial cell marker CD31 and haematopoietic cell marker CD34. Moreover, no reference RNA-seq was used to analyse the eMSCs transcriptional expression profile and key pathways. Compared with skin fibroblast cell group, 9104 differentially expressed genes (DEGs) were identified, among which are 5034 genes upregulated, 4070 genes downregulated and the top 20 enrichment pathways of DEGs in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes Genomes (KEGG) mainly associated with G-protein coupled receptor signalling pathway, carbohydrate derivative binding, nucleoside binding, ribosome biogenesis, cell cycle, DNA replication, Ras signalling pathway and purine metabolism. Among the DEGs, some representative genes about promoting MSCs differentiation and proliferation were upregulated and promoting fibroblasts proliferation were downregulated in eMSCs group. Red panda eMSCs also had multiple differentiation ability and could differentiate into adipocytes, chondrocytes and hepatocytes. In conclusion, we, for the first time, isolated and characterized the red panda eMSCs with ability of multiplication and multilineage differentiation in vitro. The new multipotential stem cell could be beneficial not only for the germ plasm resources conservation of red panda, but also for basic or pre-clinical studies in the future.

6.
Gene ; 845: 146854, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055605

RESUMO

Mesenchymal stem cells (MSCs) have pluripotent differentiation ability and play an important role in human clinical cell therapy. While, the research on MSCs in endangered wild animals is extremely rare. In our previous studies, the bone marrow mesenchymal stem cells (bmMSCs) and umbilical cord mesenchymal stem cells (ucMSCs) of giant panda (Ailuropoda melanoleuca) were successfully isolated. We aimed to characterize the differences in gene expression profiles between these two types of MSCs using RNA sequencing (RNA-Seq) and to determine which potential pathways are involved in functional regulation. In total, 1079 significantly differentially expressed genes (DEGs) were identified, of which 478 genes were upregulated and 601 genes were downregulated. The significantly enriched Gene Ontology (GO) terms mainly contained cell adhesion, biological adhesion, intracellular signal transduction, molecular function regulator, Ras protein signal transduction, small GTPase mediated signal transduction, and regulation of Rho protein signal transduction. The most enrichment pathways of DEGs enriched in Kyoto Encyclopedia of Genes Genomes (KEGG) were PI3K-AKT signaling pathway, Rap1 signaling pathway, MAPK signaling pathway, Hippo signaling pathway, Wnt signaling pathway, cGMP-PKG signaling pathway and Signaling pathways regulating pluripotency of stem cells. In addition, quantitative real time polymerase chain reaction (qRT-PCR) showed that the AKT3, CDK2, MAPK3, mTOR, PI3K and PTK2 genes associated with PI3K-AKT pathway were highly expressed (P < 0.01), and Caspase-3 was low expressed (P < 0.05) in ucMSCs group when compared with bmMSCs. After treatment with the PI3K inhibitor LY294002, genes AKT3, CDK2, MAPK3, mTOR, and PTK2 were significantly decreased in ucMSCs (P < 0.01), and Caspase-3 was significantly up regulated (P < 0.001). In conclusion, we for the first time compared and analyzed the transcriptome profiles of giant panda ucMSCs and bmMSCs, and found the PI3K-AKT pathway was highly activated and might be a key signaling pathway in the ucMSCs regulation. This study will be beneficial for the research on MSCs proliferation regulation and differentiation of giant pandas in the future, and lay the foundation for MSCs application and clinical therapy for endangered wild animals.


Assuntos
Células-Tronco Mesenquimais , Transcriptoma , Ursidae , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Caspase 3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cordão Umbilical/metabolismo , Ursidae/genética , Proteínas ras
7.
Zoology (Jena) ; 140: 125775, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251890

RESUMO

Mesenchymal stem cells (MSC) have strong therapeutic potential due to their capacity for self-renewal and multilineage differentiation. MSCs can also be useful in preserving the current genetic diversity of endangered wildlife. To date, MSCs from various species have been studied, but only a few species of endangered wild animals have been reported. Adult bone marrow (BM) is a rich source of mesenchymal stem cells. The aim of this study was to isolate and characterize MSCs derived from the BM of red pandas. Red panda BM-MSCs isolated from five individuals were fibroblast-like cells, similar to other species. Cultured BM-MSCs with normal karyotype were negative for the hematopoietic line marker CD34 and the endothelial cell marker CD31 but were positive for MSC markers, including CD44, CD105 and CD90. RT-PCR and western blot analysis showed self-renewal and pluripotency genes, including Oct4, Sox2 and Klf4, were also expressed in red panda BM-MSCs. Finally, red panda BM-MSCs had the potential for differentiation into osteogenic, adipogenic and neuron-like cells by using a combination of previously reported protocols for other species. We have therefore demonstrated that cells harvested from red panda bone marrow are capable of extensive in vitro multiplication and multilineage differentiation, which is an essential step toward their use in the preservation of red pandas biological diversity and future studies on MSC applications in endangered species.


Assuntos
Ailuridae/fisiologia , Células da Medula Óssea/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA