Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Nature ; 609(7926): 287-292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071187

RESUMO

Metal-catalysed reactions are often hypothesized to proceed on bifunctional active sites, whereby colocalized reactive species facilitate distinct elementary steps in a catalytic cycle1-8. Bifunctional active sites have been established on homogeneous binuclear organometallic catalysts9-11. Empirical evidence exists for bifunctional active sites on supported metal catalysts, for example, at metal-oxide support interfaces2,6,7,12. However, elucidating bifunctional reaction mechanisms on supported metal catalysts is challenging due to the distribution of potential active-site structures, their dynamic reconstruction and required non-mean-field kinetic descriptions7,12,13. We overcome these limitations by synthesizing supported, atomically dispersed rhodium-tungsten oxide (Rh-WOx) pair site catalysts. The relative simplicity of the pair site structure and sufficient description by mean-field modelling enable correlation of the experimental kinetics with first principles-based microkinetic simulations. The Rh-WOx pair sites catalyse ethylene hydroformylation through a bifunctional mechanism involving Rh-assisted WOx reduction, transfer of ethylene from WOx to Rh and H2 dissociation at the Rh-WOx interface. The pair sites exhibited >95% selectivity at a product formation rate of 0.1 gpropanal cm-3 h-1 in gas-phase ethylene hydroformylation. Our results demonstrate that oxide-supported pair sites can enable bifunctional reaction mechanisms with high activity and selectivity for reactions that are performed in industry using homogeneous catalysts.

2.
Proc Natl Acad Sci U S A ; 119(11): e2112109119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263231

RESUMO

SignificanceDirect ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C-C bond cleavage to oxidize ethanol to CO2. This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

3.
J Am Chem Soc ; 146(5): 2857-2875, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266172

RESUMO

Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.

4.
J Am Chem Soc ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859684

RESUMO

Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.

5.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654179

RESUMO

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Regiões Promotoras Genéticas , Resistência à Seca , Nitrogênio/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
6.
Acc Chem Res ; 56(18): 2447-2458, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37647142

RESUMO

ConspectusIn recent years, the simultaneous upgrading of CO2 and ethane has emerged as a promising approach for generating valuable gaseous (CO, H2, and ethylene) and liquid (aromatics and C3 oxygenates) chemicals from the greenhouse gas CO2 and large-reserved shale gas. The key challenges for controlling product selectivity lie in the selective C-H and C-C bond cleavage of ethane with the assistance of CO2. Bimetallic-derived catalysts likely undergo alloying or oxygen-induced segregation under reaction conditions, thus providing diverse types of interfacial sites, e.g., metal/support (M/M'Ox) interface and metal oxide/metal (M'Ox/M) inverse interface, that are beneficial for selective CO2-assisted ethane upgrading. The alloying extent can be initially predicted by cohesive energy and atomic radius (or Wigner-Seitz radius), while the preference for segregation to form the on-top suboxide can be approximated using the work function, electronegativity, and binding strength of adsorbed oxygen. Furthermore, bimetallic-derived catalysts are typically supported on high surface area oxides. Modifying the reducibility and acidity/basicity of the oxide supports and introducing surface defects facilitate CO2 activation and oxygen supplies for ethane activation.Using in situ synchrotron characterization and density functional theory (DFT) calculations, we found that the electronic properties of oxygen species influence the selective cleavage of C-H/C-C bonds in ethane, with electron-deficient oxygen over the metal (or alloy) surface promoting nonselective bond scission to produce syngas and electron-enriched oxygen over the metal oxide/metal interface enhancing selective C-H scission to yield ethylene. We further demonstrate that the preferred structures of the catalyst surfaces, either alloy surfaces or metal oxide/metal inverse interfaces, can be controlled through the appropriate choice of metal combinations and their atomic ratios. Through a comprehensive comparison of experimental results and DFT calculations, the selectivity of C-C/C-H bond scission is correlated with the thermodynamically favorable bimetallic-derived structures (i.e., alloy surfaces or metal oxide/metal inverse interfaces) under reaction conditions over a wide range of bimetallic catalysts. These findings not only offer structural and mechanistic insights into bimetallic-derived catalysts but also provide design principles for selective catalysts for CO2-assisted activation of ethane and other light alkanes. This Account concludes by discussing challenges and opportunities in designing advanced bimetallic-derived catalysts, incorporating new reaction chemistries for other products, employing precise synthesis strategies for well-defined structures with optimized site densities, and leveraging time/spatial/energy-resolved in situ spectroscopy/scattering/microscopy techniques for comprehensive structural analysis. The research methodologies established here are helpful for the investigation of dynamic alloy and interfacial structures and should inspire more efforts toward the simultaneous upgrading of CO2 and shale gas.

7.
Angew Chem Int Ed Engl ; 63(29): e202404047, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703385

RESUMO

The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30 % of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.

8.
Angew Chem Int Ed Engl ; : e202409526, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032131

RESUMO

The development of active, stable, and more affordable electrocatalysts for acidic oxygen evolution reaction (OER) is of great importance for the practical application of electrolyzers and the advancement of renewable energy conversion technologies. Currently, IrO2 is the only catalyst with high stability and activity, but a high cost. Further optimization of the catalyst is limited by the lack of understanding of catalytic behaviors at the acid-IrO2 interface. Here, in strong interaction with the experiment, we develop an explicit model based on grand-canonical density function theory (GC-DFT) calculations to describe acidic OER over IrO2. Compared to the explicit models reported previously, hydronium cations (H3O+) are introduced at the electrochemical interface in the current model. As a result, a variation in stable IrO2 surface configuration under the OER operating condition from previously proposed complete *O-coverage to a mixture coverage of *OH and *O is revealed, which is well supported by in situ Raman measurements. In addition, the accuracy of predicted overpotential is increased in comparison with the experimentally measured. More importantly, an alteration of the potential limiting step from previously identified *O → *OOH to *OH → *O is observed, which opens new opportunities to advance the IrO2-based catalysts for acidic OER.

9.
Angew Chem Int Ed Engl ; 63(30): e202406452, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38735843

RESUMO

Acidic H2O2 synthesis through electrocatalytic 2e- oxygen reduction presents a sustainable alternative to the energy-intensive anthraquinone oxidation technology. Nevertheless, acidic H2O2 electrosynthesis suffers from low H2O2 Faradaic efficiencies primarily due to the competing reactions of 4e- oxygen reduction to H2O and hydrogen evolution in environments with high H+ concentrations. Here, we demonstrate the significant effect of alkali metal cations, acting as competing ions with H+, in promoting acidic H2O2 electrosynthesis at industrial-level currents, resulting in an effective current densities of 50-421 mA cm-2 with 84-100 % Faradaic efficiency and a production rate of 856-7842 µmol cm-2 h-1 that far exceeds the performance observed in pure acidic electrolytes or low-current electrolysis. Finite-element simulations indicate that high interfacial pH near the electrode surface formed at high currents is crucial for activating the promotional effect of K+. In situ attenuated total reflection Fourier transform infrared spectroscopy and ab initio molecular dynamics simulations reveal the central role of alkali metal cations in stabilizing the key *OOH intermediate to suppress 4e- oxygen reduction through interacting with coordinated H2O.

10.
Angew Chem Int Ed Engl ; 63(17): e202319580, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38433092

RESUMO

Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000 g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.

11.
Opt Express ; 31(21): 34577-34588, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859210

RESUMO

We propose a design of the compact high-resolution photonic crystal (PhC) spectrometer with a wide working bandwidth based on both super-prism and local-super-collimation (LSC) effects. The optimizing methods, finding the ideal incident angle and oblique angle of PhC for a wider working bandwidth and ideal incident beam width and PhC size for a certain resolution requirement, are developed. Besides the theoretical work, for the first time, the experiment of such a PhC spectrometer is conducted in the microwave frequency range, and the beam-splitting effects for different frequencies in a wide working bandwidth agree very well with the theoretical predictions. According to the scalability, with the condition to control the deviations in the fabrication processes the design could be extended to optical frequency ranges, e.g., infrared, visible-light, and ultraviolet ranges. The spectrometer in optical frequencies can be implemented on silicon-on-insulator (SOI) chips as a thin-slab structure so that the operating bandwidth can be expanded further through the multi-layer design. Theoretically, the size of the ultra-high-resolution PhC spectrometer in optical frequency ranges based on our design could be two orders smaller than the traditional design.

12.
Nano Lett ; 22(11): 4576-4582, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605250

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) has been studied on Ag, Pd, Ag@Pd1-2L nanocubes using a combination of in situ characterization and density functional theory calculations. By manipulating the deposition and diffusion rates of Pd atoms on Ag nanocubes, Ag@Pd core-shell nanocubes with a shell thickness of 1-2 atomic layers have been successfully synthesized for CO2RR. Pd nanocubes produce CO with high selectivity due to the transformation of Pd to Pd hydride (PdH) during CO2RR. In contrast, PdH formation becomes more difficult in Ag@Pd1-2L core-shell nanocubes, which inhibits CO production from the *HOCO intermediate and thus tunes the reaction pathway toward HCOOH. Ag nanocubes exhibit high selectivity toward H2, and there is no phase transition during CO2RR. The results demonstrate that the CO2RR reaction pathways can be manipulated through engineering the surface structure of Pd-based catalysts by allowing or preventing the formation of PdH.

13.
J Am Chem Soc ; 144(9): 4186-4195, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35133131

RESUMO

The selective C-H/C-C bond scission in CO2-assisted alkane activation represents an opportunity for simultaneously upgrading greenhouse gas CO2 and light alkanes for the synthesis of value-added syngas (CO and H2), olefins, aromatics, and oxygenates. Here, Pd bimetallic (PdMx)-derived catalysts were investigated for ethane-CO2 reactions by combining kinetic analysis, in situ characterization, and density functional theory calculations. Two types of catalyst structures were identified under the reaction conditions, with the PdCox alloy surface favoring ethoxy formation, a critical precursor for further C-C bond scission, and the reaction-induced InOx/Pd interface promoting C-H bond scission. Our results revealed a general strategy to capture the reaction-induced surface configurations and in turn control the selectivity in C-C/C-H bond scission over PdMx-derived catalysts, featuring the interplay of two general descriptors: formation energy of PdMx surfaces and their binding energy to oxygen. Our study provides insight into the rational design of selective catalysts for light alkane-CO2 reactions.

14.
J Am Chem Soc ; 144(35): 16131-16138, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007154

RESUMO

Single-atom catalysts (SACs) of non-precious transition metals (TMs) often show unique electrochemical performance, including the electrochemical carbon dioxide reduction reaction (CO2RR). However, the inhomogeneity in their structures makes it difficult to directly compare SACs of different TM for their CO2RR activity, selectivity, and reaction mechanisms. In this study, the comparison of isolated TMs (Fe, Co, Ni, Cu, and Zn) is systematically investigated using a series of crystalline molecular catalysts, namely TM-coordinated phthalocyanines (TM-Pcs), to directly compare the intrinsic role of the TMs with identical local coordination environments on the CO2RR performance. The combined experimental measurements, in situ characterization, and density functional theory calculations of TM-Pc catalysts reveal a TM-dependent CO2RR activity and selectivity, with the free energy difference of ΔG(*HOCO) - ΔG(*CO) being identified as a descriptor for predicting the CO2RR performance.

15.
J Am Chem Soc ; 144(45): 20931-20938, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382467

RESUMO

A hybrid catalyst with integrated single-atom Ni and nanoscale Cu catalytic components is reported to enhance the C-C coupling and ethylene (C2H4) production efficiency in the electrocatalytic CO2 reduction reaction (eCO2RR). The single-atom Ni anchored on high-surface-area ordered mesoporous carbon enables high-rate and selective conversion of CO2 to CO in a wide potential range, which complements the subsequent CO enrichment on Cu nanowires (NWs) for the C-C coupling to C2H4. In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) confirms the substantially improved CO enrichment on Cu, once the incorporation of single-atom Ni occurs. Also, in situ X-ray absorption near-edge structure (XANES) demonstrates the structural stability of the hybrid catalyst during eCO2RR. By modulating hybrid compositions, the optimized catalyst shows 66% Faradaic efficiency (FE) in an alkaline flow cell with over 100 mA·cm-2 at -0.5 V versus reversible hydrogen electrode, leading to a five-order enhancement in C2H4 selectivity compared with single-component Cu NWs.

16.
Curr Issues Mol Biol ; 44(5): 2350-2361, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35678689

RESUMO

Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants' resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.

17.
Opt Express ; 30(9): 14002-14018, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473154

RESUMO

By using single-layer metasurfaces, we realized ultrawide-angle high-transmission in the millimeter-wave band, which allowed more than 98% transmission of dual-polarized electromagnetic waves for almost all incident angles. The multipolar expansion method was used to analyze and verify the condition of the generalized Kerker effect at the corresponding reflected angles. Using quartz glass substrates with the same metallic periodic structures, electromagnetic windows are proposed that can improve any-directed 5G millimeter-wave communication signals from outdoor to indoor environments. The proposed interpretations can connect the Kerker effect with actual applications and enable the design of easy-to-integrate all-angle Kerker effect metasurface devices.

18.
Chem Rev ; 120(15): 7984-8034, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32049507

RESUMO

The utilization of fossil fuels has enabled an unprecedented era of prosperity and advancement of well-being for human society. However, the associated increase in anthropogenic carbon dioxide (CO2) emissions can negatively affect global temperatures and ocean acidity. Moreover, fossil fuels are a limited resource and their depletion will ultimately force one to seek alternative carbon sources to maintain a sustainable economy. Converting CO2 into value-added chemicals and fuels, using renewable energy, is one of the promising approaches in this regard. Major advances in energy-efficient CO2 conversion can potentially alleviate CO2 emissions, reduce the dependence on nonrenewable resources, and minimize the environmental impacts from the portions of fossil fuels displaced. Methanol (CH3OH) is an important chemical feedstock and can be used as a fuel for internal combustion engines and fuel cells, as well as a platform molecule for the production of chemicals and fuels. As one of the promising approaches, thermocatalytic CO2 hydrogenation to CH3OH via heterogeneous catalysis has attracted great attention in the past decades. Major progress has been made in the development of various catalysts including metals, metal oxides, and intermetallic compounds. In addition, efforts are also put forth to define catalyst structures in nanoscale by taking advantage of nanostructured materials, which enables the tuning of the catalyst composition and modulation of surface structures and potentially endows more promising catalytic performance in comparison to the bulk materials prepared by traditional methods. Despite these achievements, significant challenges still exist in developing robust catalysts with good catalytic performance and long-term stability. In this review, we will provide a comprehensive overview of the recent advances in this area, especially focusing on structure-activity relationship, as well as the importance of combining catalytic measurements, in situ characterization, and theoretical studies in understanding reaction mechanisms and identifying key descriptors for designing improved catalysts.

19.
Chem Soc Rev ; 50(22): 12338-12376, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34580693

RESUMO

Transition metal carbides and nitrides are interesting non-precious materials that have been shown to replace or reduce the loading of precious metals for catalyzing several important electrochemical reactions. The purpose of this review is to summarize density functional theory (DFT) studies, describe reaction pathways, identify activity and selectivity descriptors, and present a future outlook in designing carbide and nitride catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (N2RR), CO2 reduction reaction (CO2RR) and alcohol oxidation reactions. This topic is of high interest to scientific communities working in the field of electrocatalysis and this review should provide theoretical guidance for the rational design of improved carbide and nitride electrocatalysts.

20.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328589

RESUMO

Grain size is a quantitative trait that is controlled by multiple genes. It is not only a yield trait, but also an important appearance quality of rice. In addition, grain size is easy to be selected in evolution, which is also a significant trait for studying rice evolution. In recent years, many quantitative trait loci (QTL)/genes for rice grain size were isolated by map-based cloning or genome-wide association studies, which revealed the genetic and molecular mechanism of grain size regulation in part. Here, we summarized the QTL/genes cloned for grain size and the regulation mechanism with a view to provide the theoretical basis for improving rice yield and breeding superior varieties.


Assuntos
Oryza , Mapeamento Cromossômico , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA