Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e112920, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36398765

RESUMO

Mitochondria are key signaling hubs for innate immune responses. In this issue, Wu et al (2022) report that remodeling of the outer mitochondrial membrane by the linear ubiquiting chain assembly complex (LUBAC) facilitates transport of activated NF-κB to the nucleus in response to TNF signaling.


Assuntos
NF-kappa B , Ubiquitina-Proteína Ligases , NF-kappa B/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo
2.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598721

RESUMO

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES). The microcavity is patterned using focused ion beam etching to realize arbitrary lattice geometries, including defect sites on demand. The band structure of the lattice and the emergence of condensation are imaged using momentum-resolved spectroscopy. The introduction of defect sites is shown to lower the condensation threshold and result in the formation of a defect band in the condensation spectrum. The present approach allows us to study periodic, quasiperiodic, and disordered polariton condensate lattices at room temperature using a direct-write approach.

3.
Chemphyschem ; : e202400250, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820005

RESUMO

The design and application of molecular photoswitches have attracted much attention. Herein, we performed a detailed computational study on the photoswitch benzylidene-oxazolone system based on static electronic structure calculations and on-the-fly excited-state dynamic simulations. For the Z and E isomer, we located six and four minimum energy conical intersections (MECIs) between the first excited state (S1) and the ground state (S0), respectively. Among them, the relaxation pathway driven by ring-puckering motion is the most competitive channel with the photoisomeization process, leading to the low photoisomerization quantum yield. In the dynamic simulations, about 88 % and 66 % trajectories decays from S1 to S0 for Z and E isomer, respectively within the total simulation time of ~2 ps. The photoisomeization quantum yields obtained in our study (0.20 for Z→E and 0.12 for E→Z) agree well with the experimental measured values (0.25 and 0.11), even though the number of trajectories are limited to 50. Our study sheds light on the complexity of the benzylidene-oxazolone system 's deactivation process and the competitive mechanisms among different reaction channels, which provide theoretical guidance for further design and development of benzylidene-oxazolone based molecular photoswitches.

4.
Inorg Chem ; 63(23): 10481-10489, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38783831

RESUMO

Achieving high-efficiency tunable emission in a single phosphor remains a significant challenge. Herein, we report a series of Sb3+-doped all-inorganic double perovskites, Sb3+:Cs2NaScCl6, with efficient excitation-dependent emission. In 0.5%Sb3+:Cs2NaScCl6, strong blue emission with a high photoluminescence quantum yield (PLQY) of 85% is obtained under 265 nm light irradiation, which turns into bright neutral white light with a PLQY of 56% when excited at 303 nm. Spectroscopic and computational investigations were performed to reveal the mechanism of this excitation-dependent emission. Sb3+ doping induces two different excitation channels: the internal transition of Sb3+: 5s2 → 5s5p and the electron transfer transition of Sb3+: 5s → Sc3+ 3d. The former one generates excited Sb3+ ions, which can undergo efficient energy transfer to populate the host self-trapped exciton (STE) state, yielding enhanced blue emission. The latter one leads to the formation of a new STE state with the hole localized on Sb3+ and the electron delocalized on the nearest Sc3+, which accounts for the newly exhibited low-energy emission. The difference in the excitation pathways of the two emitting STE states results in the highly efficient excitation-dependent emission, making the doped systems promising anticounterfeiting materials.

5.
Phys Chem Chem Phys ; 26(17): 13506-13514, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651980

RESUMO

Fluorescent probes have become promising tools for monitoring the concentration of peroxynitrite, which is linked to many diseases. However, despite focusing on developing numerous peroxynitrite based fluorescent probes, limited emphasis is placed on their sensing mechanism. Here, we investigated the sensing mechanism of a peroxynitrite fluorescent probe, named BHID-Bpin, with a focus on the relevant excited state dynamics. The photoexcited BHID-Bpin relaxes to its ground state via an efficient nonradiative process (∼300 ps) due to the presence of a minimum energy conical intersection between its first excited state and ground state. However, upon reacting with peroxynitrite, the Bpin moiety is cleaved from BHID-Bpin and BHID is formed. The formed BHID exhibits strong dual band fluorescence which is caused by an ultrafast excited-state intramolecular proton transfer process (∼1 ps).

6.
Cell Mol Life Sci ; 80(5): 123, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071198

RESUMO

Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of ß-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Camundongos , Humanos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos
7.
Nano Lett ; 23(14): 6610-6618, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458704

RESUMO

Diabetic ulcers have received much attention in recent years due to their high incidence and mortality, motivating the scientific community to develop various strategies for such chronic disease treatments. However, the therapeutic outcome of these approaches is highly compromised by invasive bacteria and a severe inflammatory microenvironment. To overcome these dilemmas, microenvironment-responsive self-delivery glucose oxidase@manganese sulfide (GOx@MnS) nanoparticles (NPs) are developed by one-step biomineralization. When they encounter the high glucose level in the ulcer site, GOx particles catalyze glucose to decrease the local pH and trigger the steady release of both manganese ions (Mn2+) and hydrogen sulfide (H2S). Mn2+ reacts with hydrogen peroxide to generate hydroxyl radicals for the elimination of bacterial infection; meanwhile, H2S is able to suppress the inflammatory response and accelerate diabetic wound healing through macrophage polarization. The excellent biocompatibility, strong bactericidal activity, and considerable immunomodulatory effect promise GOx@MnS NPs have great therapeutic potential for diabetic wound treatment.


Assuntos
Diabetes Mellitus , Sulfeto de Hidrogênio , Nanopartículas , Humanos , Glucose Oxidase/uso terapêutico , Glucose , Peróxido de Hidrogênio
8.
Nano Lett ; 23(9): 3762-3768, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096965

RESUMO

Lead-free metal halide nanocrystals (NCs) have aroused increasing attention due to their unique optoelectronic properties based on localized excitons (LEs). However, the vital influencing factors for the LEs based photoluminescence (PL) are still not well-understood due to the coupling of various intrinsic and extrinsic factors of the NCs. Herein, by engineering the phase, size, morphology, and chemical composition, we are able to decouple the intrinsic and extrinsic factors of manganese doped cesium zinc-halide NCs. We found both the intrinsic metal-halide coordination field and the extrinsic crystal defects have significant influences on the LEs' recombination and energy transfer processes, and hence determine the PL efficiency. Unlike for the free excitons (FEs) based PL, the phase as well as the crystal morphology do not play major roles for the LEs based PL. This work provides a new insight for the study of LE dynamics of metal halide NCs.

9.
Angew Chem Int Ed Engl ; 63(25): e202403927, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632085

RESUMO

All-inorganic metal halides with afterglow emission have attracted increasing attention due to their significantly longer afterglow duration and higher stability compared to their organic-inorganic hybrid counterparts. However, their afterglow colors have not yet reached the blue spectral region. Here, we report all-inorganic copper-doped Rb2AgBr3 single crystals with ultralong blue afterglow (>300 s) by modulating defect states through doping engineering. The introduction of copper(I) ions into Rb2AgBr3 facilitates the formation of bromine vacancies, thus increasing the density of trap states available for charge storage and enabling bright, persistent emission after ceasing the excitation. Moreover, cascade energy transfer between distinct emissive centers in the crystals results in ultra-broadband photoluminescence, not only covering the whole white light with near-unity quantum yield but also extending into the near-infrared region. This 'cocktail' of exotic light-emission properties, in conjunction with the excellent stability of copper-doped Rb2AgBr3 crystals, allowed us to demonstrate their implementation to solid-state lighting, night vision, and intelligent anti-counterfeiting.

10.
Angew Chem Int Ed Engl ; 63(8): e202319969, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179817

RESUMO

Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.

11.
Phys Chem Chem Phys ; 25(46): 32002-32009, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37975722

RESUMO

The high photostability of DNAs and RNAs is inextricably related to the photochemical and photophysical properties of their building blocks, nucleobases and nucleosides, which can dissipate the absorbed UV light energy in a harmless manner. The deactivation mechanism of the nucleosides, especially the decay pathways of cytidine (Cyd), has been a matter of intense debate. In the current study, we employ high-level electronic structure calculations combined with excited state non-adiabatic dynamic simulations to provide a clear picture of the excited state deactivation of Cyd in both gas phase and aqueous solution. In both environments, a barrierless decay path driven by the ring-puckering motion and a relaxation channel with a small energy barrier driven by the elongation motion of CO bond are assigned to <200 fs and sub-picosecond decay time component, respectively. The presence of ribose group has a subtle effect on the dynamic behavior of Cyd in gas phase as the ribose-to-base hydrogen/proton transfer process is energetically inaccessible with a sizable energy barrier of about 1.4 eV. However, this energy barrier is significantly reduced in water, especially when an explicit water molecule is present. Therefore, we argue that the long-lived decay channel found in aqueous solution could be assigned to the Cyd-water intermolecular hydrogen/proton transfer process. The present study postulates a novel scenario toward deep understanding the intrinsic photostability of DNAs and RNAs and provides solid evidence to disclose the long history debate of cytidine excited-state decay mechanism, especially for the assignment of experimentally observed time components.

12.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047817

RESUMO

A new therapy strategy for relapsing patients who have received trastuzumab treatment urgently needs to be explored. HER2-specific chimeric antigen receptor (CAR)-expressing NK cells are being rapidly developed for solid tumor therapy, as they have many advantages over HER2-CAR-T cells. Endogenous soluble PD-1 (sPD-1) from the PD-1 extracellular domain blocks PD-1/PD-L1 interaction to promote cancer immunology. Herein, we engineered a new HER2-CAR-NK cell that co-expresses sPD-1 (designed as sPD-1-CAR-NK cells) and assessed its cytotoxic activities toward various cancer cells, activation of immunity and sPD-1 release in vitro and in mouse models bearing breast cancer cells with high HER2 expression, with or without trastuzumab resistance. We demonstrated that sPD-1-CAR-NK cells were able to release bioactive sPD-1, thereby enhancing the cytolytic activities of HER2-CAR-NK cells against HER2 and PD-L1 highly expressing target cells accompanied by increases in the secretion of perforin, granzyme B and IFN-γ. In vivo, sPD-1-CAR-NK cells had superior immunological anticancer efficacy compared to HER2-CAR-NK cells, and they had advantages over HER2-CAR-NK cells in the intraperitoneal injection of sPD-1. Moreover, the infiltration and activation of NK and T cells into tumor tissue were increased in mice with sPD-1-CAR-NK cells. There was no significant change in the body temperature, organ tissue and body weight in all groups except for the group with the PD-1 injection. Together, these data indicate that HER2-specific sPD-1-CAR-NK cells can transport sPD-1 into cancer tissues with high HER2 expression, further improving the efficacy of HER-CAR-NK cells without obvious side effects. sPD-1-CAR-NK is a promising cytotherapeutic agent for patients bearing HER2-positive breast cancer, including those with trastuzumab resistance.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células Matadoras Naturais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia Adotiva
13.
Angew Chem Int Ed Engl ; 62(39): e202309760, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578902

RESUMO

DNA-stabilized silver nanoclusters (DNA-AgNCs) are easily tunable emitters with intriguing photophysical properties. Here, a DNA-AgNC with dual emission in the red and near-infrared (NIR) regions is presented. Mass spectrometry data showed that two DNA strands stabilize 18 silver atoms with a nanocluster charge of 12+. Besides determining the composition and charge of DNA2 [Ag18 ]12+ , steady-state and time-resolved methods were applied to characterize the picosecond red fluorescence and the relatively intense microsecond-lived NIR luminescence. During this process, the luminescence-to-fluorescence ratio was found to be excitation-intensity-dependent. This peculiar feature is very rare for molecular emitters and allows the use of DNA2 [Ag18 ]12+ as a nanoscale excitation intensity probe. For this purpose, calibration curves were constructed using three different approaches based either on steady-state or time-resolved emission measurements. The results showed that processes like thermally activated delayed fluorescence (TADF) or photon upconversion through triplet-triplet annihilation (TTA) could be excluded for DNA2 [Ag18 ]12+ . We, therefore, speculate that the ratiometric excitation intensity response could be the result of optically activated delayed fluorescence.


Assuntos
Nanoestruturas , Prata , Prata/química , Nanoestruturas/química , DNA/química , Espectrometria de Fluorescência , Fótons
14.
Angew Chem Int Ed Engl ; 62(2): e202213240, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36377275

RESUMO

Double perovskites (DPs) are one of the most promising candidates for developing white light-emitting diodes (WLEDs) owing to their intrinsic broadband emission from self-trapped excitons (STEs). Translation of three-dimensional (3D) DPs to one-dimensional (1D) analogues, which could break the octahedral tolerance factor limit, is so far remaining unexplored. Herein, by employing a fluorinated organic cation, we report a series of highly luminescent 1D DP-inspired materials, (DFPD)2 MI InBr6 (DFPD=4,4-difluoropiperidinium, MI =K+ and Rb+ ). Highly efficient warm-white photoluminescence quantum yield of 92 % is achieved by doping 0.3 % Sb3+ in (DFPD)2 KInBr6 . Furthermore, single-component warm-WLEDs fabricated with (DFPD)2 KInBr6 :Sb yield a luminance of 300 cd/m2 , which is one of the best-performing lead-free metal-halides WLEDs reported so far. Our study expands the scope of In-based metal-halides from 3D to 1D, which exhibit superior optical performances and broad application prospects.

15.
Opt Lett ; 47(20): 5313-5316, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240350

RESUMO

We report, for the first time, to the best of our knowledge, mid-infrared (mid-IR) laser generation, from a red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber laser. A free-running laser at ∼3.4 µm, mainly from the 4F9/2→4I9/2 transition of Er3+, directly excited by a 659-nm laser diodehas been achieved at room temperature with a maximum power of 0.8 W and 8.8% slope efficiency. In this system, the long-lived 4I11/2 and 4I13/2 states are rapidly depopulated by energy transfer to the codoped Dy3+ ions and energy transfer upconversion between the Er3+ ions, resulting in the accelerated recycling of ions. Additionally, the free-running dual-wavelength operation state at ∼3.3 and ∼3.5 µm is also observed, producing a total maximum power of 0.95 W with 10.7% slope efficiency, representing the first watt-class output from a diode-pumped rare-earth-doped fiber laser far beyond 3 µm. By employing a diffraction grating, continuous spectral tuning across the 642-nm range from 3053.9 to 3695.9 nm has been demonstrated. The proposed scheme provides, to the best of our knowledge, a promising new platform for laser generation in the mid-IR region of 3-4 µm.

16.
BMC Cancer ; 22(1): 1092, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284271

RESUMO

BACKGROUND: Antibodies and derivative drugs targeting immune checkpoints have been approved for the treatment of several malignancies, but there are fewer responses in patients with pancreatic cancer. Here, we designed a nanobody molecule with bi-targeting on PD-L1 and CXCR4, as both targets are overexpressed in many cancer cells and play important roles in tumorigenesis. We characterized the biochemical and anti-tumour activities of the bispecific nanobodies in vitro and in vivo. METHODS: A nanobody molecule was designed and constructed. The nanobody sequences targeting PD-L1 and CXCR4 were linked by the (G4S)3 flexible peptide to construct the anti-PD-L1/CXCR4 bispecific nanobody. The bispecific nanobody was expressed in E. coli cells and purified by affinity chromatography. The purified nanobody was biochemically characterized by mass spectrometry, Western blotting and flow cytometry to confirm the molecule and its association with both PD-L1 and CXCR4. The biological function of the nanobody and its anti-tumour effects were examined by an in vitro tumour cell-killing assay and in vivo tumour inhibition in mouse xenograft models. RESULTS: A novel anti-PD-L1/CXCR4 bispecific nanobody was designed, constructed and characterized. The molecule specifically bound to two targets on the surface of human cancer cells and inhibited CXCL12-induced Jurkat cell migration. The bispecific nanobody increased the level of IFN-γ secreted by T-cell activation. The cytotoxicity of human peripheral blood mononuclear cells (hPBMCs) against pancreatic cancer cells was enhanced by the molecule in combination with IL-2. In a human pancreatic cancer xenograft model, the anti-PD-L1/CXCR4 nanobody markedly inhibited tumour growth and was superior to the combo-treatment by anti-PD-L1 nanobody and anti-CXCR4 nanobody or treatment with atezolizumab as a positive control. Immunofluorescence and immunohistochemical staining of xenograft tumours showed that the anti-tumour effects were associated with the inhibition of angiogenesis and the infiltration of immune cells. CONCLUSION: These results clearly revealed that the anti-PD-L1/CXCR4 bispecific nanobody exerted anti-tumour efficacy in vitro and inhibited tumour growth in vivo. This agent can be further developed as a therapeutic reagent to treat human pancreatic cancer by simultaneously blocking two critical targets.


Assuntos
Anticorpos Biespecíficos , Neoplasias Pancreáticas , Anticorpos de Domínio Único , Camundongos , Animais , Humanos , Receptor de Morte Celular Programada 1 , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/uso terapêutico , Interleucina-2 , Leucócitos Mononucleares/metabolismo , Escherichia coli/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Receptores CXCR4 , Neoplasias Pancreáticas
17.
Phys Chem Chem Phys ; 24(43): 26731-26737, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314051

RESUMO

Fluorescence sensing plays an increasingly important role in biology and biomedicine. For many practical applications of fluorescent probes, an "off-on" response is preferred. The question of how fluorescence quenching/enhancement occurs is fundamental and of high importance for application and design of new fluorescent probes. The sensing mechanism of an aminorhodamine (TMARh) pH probe is investigated using femtosecond transient absorption spectroscopy and quantum chemical calculations, showing that this probe is best understood using the bichromophore model rather than the more common models such as photoinduced electron transfer or intramolecular charge transfer. Under excitation in the main absorption band at 530 nm, a fast internal conversion to the first excited state (S1) is observed for TMARh; meanwhile, no new transient components are obtained when TMARh is excited directly to S1 in the weakly absorbing red tail at 630 nm. It is confirmed that the S1 of TMARh is a dark "off" state. Theoretical calculations show that the S1 "off" state is an intramolecular charge transfer state from an aminophenyl group to a rhodamine chromophore. After protonation of the aminophenyl group, to yield HTMARh, the transient S2/S1 internal conversion process that occurs in TMARh under 530 nm excitation is absent, suggesting that the charge transfer state becomes highly unfavorable. All calculations and spectral data confirm that HTMARh has localized transition in the rhodamine chromophore, in agreement with this being the bright "on" state of the pH probe. The current work not only provides a photophysical insight into the sensing mechanism of this specific probe, but also shows that the bichromophore model is useful and may be relevant for analyzing other probes or in the designing of new ones.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Rodaminas , Análise Espectral , Transporte de Elétrons , Concentração de Íons de Hidrogênio
18.
Sensors (Basel) ; 22(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684665

RESUMO

Magnetic resonance (MR) imaging is an important computer-aided diagnosis technique with rich pathological information. The factor of physical and physiological constraint seriously affects the applicability of that technique. Thus, computed tomography (CT)-based radiotherapy is more popular on account of its imaging rapidity and environmental simplicity. Therefore, it is of great theoretical and practical significance to design a method that can construct an MR image from the corresponding CT image. In this paper, we treat MR imaging as a machine vision problem and propose a multi-conditional constraint generative adversarial network (GAN) for MR imaging from CT scan data. Considering reversibility of GAN, both generator and reverse generator are designed for MR and CT imaging, respectively, which can constrain each other and improve consistency between features of CT and MR images. In addition, we innovatively treat the real and generated MR image discrimination as object re-identification; cosine error fusing with original GAN loss is designed to enhance verisimilitude and textural features of the MR image. The experimental results with the challenging public CT-MR image dataset show distinct performance improvement over other GANs utilized in medical imaging and demonstrate the effect of our method for medical image modal transformation.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Diagnóstico por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Cintilografia , Tomografia Computadorizada por Raios X/métodos
19.
Nano Lett ; 21(20): 8671-8678, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34633829

RESUMO

For inorganic semiconductor nanostructure, excitons in the triplet states are known as the "dark exciton" with poor emitting properties, because of the spin-forbidden transition. Herein, we report a design principle to boost triplet excitons photoluminescence (PL) in all-inorganic lead-free double-perovskite nanocrystals (NCs). Our experimental data reveal that singlet self-trapped excitons (STEs) experience fast intersystem crossing (80 ps) to triplet states. These triplet STEs give bright green color emission with unity PL quantum yield (PLQY). Furthermore, efficient energy transfer from triplet STEs to dopants (Mn2+) can be achieved, which leads to white-light emitting with 87% PLQY in both colloidal and solid thin film NCs. These findings illustrate a fundamental principle to design efficient white-light emitting inorganic phosphors, propelling the development of illumination-related applications.

20.
Angew Chem Int Ed Engl ; 61(51): e202210975, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36271496

RESUMO

Triplet exciton-based long-lived phosphorescence is severely limited by the thermal quenching at high temperature. Herein, we propose a novel strategy based on the energy transfer from triplet self-trapped excitons to Mn2+ dopants in solution-processed perovskite CsCdCl3 . It is found the Mn2+ doped hexagonal phase CsCdCl3 could simultaneously exhibit high emission efficiency (81.5 %) and long afterglow duration time (150 s). Besides, the afterglow emission exhibits anti-thermal quenching from 300 to 400 K. In-depth charge-carrier dynamics studies and density functional theory (DFT) calculation provide unambiguous evidence that carrier detrapping from trap states (mainly induced by Cl vacancy) to localized emission centers ([MnCl6 ]4- ) is responsible for the afterglow emission with anti-thermal quenching. Enlightened by the present results, we demonstrate the application of the developed materials for optical storage and logic operation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA