Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(33): 14675-14686, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39102504

RESUMO

The escalating levels of plastic waste and energy crises underscore the urgent need for effective waste-to-energy strategies. This study focused on converting polypropylene wastes into high-value products employing various iron-based catalysts and microwave radiative thermal processing. The Al-Fe catalysts exhibited exceptional performance, achieving a hydrogen utilization efficiency of 97.65% and a yield of 44.07 mmol/g PP. The gas yields increased from 19.99 to 94.21 wt % compared to noncatalytic experiments. Furthermore, this catalytic system produced high-value bamboo-shaped carbon nanotubes that were absent in other catalysts. The mechanism analysis on catalytic properties and product yields highlighted the significance of oxygen vacancies in selecting high-value products through two adsorption pathways. Moreover, the investigation examined the variations in product distribution mechanisms between conventional and microwave pyrolysis, in which microwave conditions resulted in 4 times higher hydrogen yields. The technoeconomic assessment and Monte Carlo risk analysis further compared the disparity. The microwave technique had a remarkable internal rate of return (IRR) of 39%, leading to an income of $577/t of plastic with a short payback period of 2.5 years. This research offered sustainable solutions for the plastic crisis, validating the potential applicability of commercializing the research outcomes in real-world scenarios.


Assuntos
Hidrogênio , Micro-Ondas , Nanotubos de Carbono , Plásticos , Nanotubos de Carbono/química , Hidrogênio/química , Catálise
2.
BMC Oral Health ; 24(1): 818, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026272

RESUMO

BACKGROUND: This case report highlights the importance of standardized and fully digital sequential treatment in complex occlusal rehabilitation cases. To fully resolve the patient's dental needs, such cases often require multidisciplinary interventions including periodontal therapy, endodontic treatment, anterior esthetics, implant restoration, and prosthetic rehabilitation. A fully digital workflow (including facial scanners, intraoral scanners, jaw motion tracking systems, virtual articulators, and computer-aided design software) streamlined the complex treatment, enhancing workflow simplicity, efficiency, visibility, and precision. CASE PRESENTATION: The patient presented with decreased chewing efficiency of the upper and lower prostheses, along with unsatisfactory esthetic appearance of the anterior teeth. After physical examination and radiological assessment, this complex occlusal rehabilitation case required periodontal therapy, anterior esthetic enhancement, implant restoration, and fixed prosthetic rehabilitation. Therefore, a fully digital workflow was adopted. Full-crown prostheses were placed on teeth 13, 23, and 34; a fixed bridge encompassed positions 32 to 42, and single implant crowns were placed on teeth 35 and 36. Implant-supported fixed bridges were constructed for teeth 12 to 22 and 44 to 46, anchored by implants at teeth 12, 22, 44, and 46. All definitive prostheses were fabricated from zirconia ceramics, chosen for their durability and esthetic characteristics. Finally, restorations with satisfactory esthetic and functional characteristics were seated, preserving the tooth and its supporting structures. During treatment and follow-up, the T-scan occlusal analysis system was utilized to continuously monitor and guide the adjustment of occlusal distribution across the patient's dental arches. After 18 months, the patient remains satisfied with the definitive restorations. CONCLUSIONS: This report is intended to help dentists understand and implement standardized and fully digital workflows during the management of complex occlusal rehabilitation cases; it may also facilitate harmonious integration of esthetic and functional characteristics.


Assuntos
Coroas , Prótese Dentária Fixada por Implante , Estética Dentária , Humanos , Desenho Assistido por Computador , Prótese Parcial Fixa , Seguimentos , Fluxo de Trabalho
3.
Org Lett ; 26(1): 188-192, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127651

RESUMO

A method is presented for decarboxylative alkoxy-alkoxycarbonylation of various alkenes with alcohols by electrochemical anodic oxidation of monopotassium ethyloxalate salts with good functional group compatibility. The reaction involves anodic oxidation to form an acyl radical, followed by addition to an olefin to yield a new alkyl radical, which is anodically oxidized to a carbon cation and captured by alcohols to afford ß-alkoxyalkanoates. Adding catalytic amounts of ammonium iodide enhanced the efficiency of the reactions.

4.
J Biomater Appl ; 39(1): 48-57, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659361

RESUMO

Electrospinning technology has recently attracted increased attention in the biomedical field, and preparing various cellulose nanofibril membranes for periodontal tissue regeneration has unique advantages. However, the characteristics of using a single material tend to make it challenging to satisfy the requirements for a periodontal barrier film, and the production of composite fibrous membranes frequently impacts the quality of the final fiber membrane due to the influence of miscibility between different materials. In this study, nanofibrous membranes composed of polylactic acid (PLA) and polycaprolactone (PCL) fibers were fabricated using side-by-side electrospinning. Different concentrations of gelatin were added to the fiber membranes to improve their hydrophilic properties. The morphological structure of the different films as well as their composition, wettability and mechanical characteristics were examined. The results show that PCL/PLA dual-fibrous composite membranes with an appropriate amount of gelatin ensures sufficient mechanical strength while obtaining improved hydrophilic properties. The viability of L929 fibroblasts was evaluated using CCK-8 assays, and cell adhesion on the scaffolds was confirmed by scanning electron microscopy and by immunofluorescence assays. The results demonstrated that none of the fibrous membranes were toxic to cells and the addition of gelatin improved cell adhesion to those membranes. Based on our findings, adding 30% gelatin to the membrane may be the most appropriate content for periodontal tissue regeneration, considering the scaffold's mechanical qualities, hydrophilic properties and biocompatibility. In addition, the PCL-gelatin/PLA-gelatin dual-fibrous membranes prepared using side-by-side electrospinning technology have potential applications for tissue engineering.


Assuntos
Adesão Celular , Fibroblastos , Gelatina , Nanofibras , Poliésteres , Alicerces Teciduais , Poliésteres/química , Gelatina/química , Nanofibras/química , Animais , Camundongos , Alicerces Teciduais/química , Linhagem Celular , Fibroblastos/citologia , Membranas Artificiais , Engenharia Tecidual , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Regeneração Tecidual Guiada Periodontal/métodos , Teste de Materiais , Regeneração
5.
Sci Rep ; 14(1): 16719, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030243

RESUMO

The purpose of this work is to explore the properties of the lignin-derived amine-free photoinitiating systems (PISs) during the curing process. Four novel hydrogen donors (HD1, HD2, HD3, and HD4) derived from lignin α-O-4 structural were designed and synthesized by simple methods, and their low C-H bond dissociation energies on methylene were determined by molecular orbitals theory. Four experimental groups using CQ (camphorquinone)/HD PIs formulated with Bis-GMA/TEGDMA (70 w%/30 w%) were compared to CQ/EDB (ethyl 4-dimethylamino benzoate) system. The photopolymerization profiles and double bond conversion rate was tracked by FTIR experiments; the color bleaching ability of the samples and color aging test assay were performed using color indexes measurements; The cytotoxicity of the samples was also compared to EDB related systems. All of the experimental groups with new HDs were compared to the control group with EDB by statistical analysis. Compared to CQ/EDB system, new lignin-derived hydrogen donors combined with CQ showed comparable or even better performances in polymerization initiation to form resin samples, under a blue dental LED in air. Excellent color bleaching property was observed with the new HDs. Aging tests and cytotoxicity examination of the resin were performed, indicating the new lignin compounds to be efficient hydrogen donors for amine-free CQ-based photo-initiating system. Novel lignin α-O-4 derived hydrogen donors are promising for further usage in light-curing materials.


Assuntos
Lignina , Polimerização , Lignina/química , Hidrogênio/química , Terpenos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resinas Sintéticas/química , Materiais Dentários/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Cânfora/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA