Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Opt Express ; 31(18): 29573-29588, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710754

RESUMO

In this work, we analyze the performance of finite-size metal-dielectric nanoslits guided mode resonance metasurface optical filters by using finite-difference time-domain simulations and spatial Fourier transform analysis. It is shown that in the direction of the nanoslits period, the critical size required to maintain the performance of the corresponding infinite size filter is the product of the nanoslits period and the quality factor of the infinite size filter. Size reduction in this dimension below the critical dimension reduces the peak transmittance and broadens the spectral linewidth of the filter. In the dimension orthogonal to the nanoslits period direction, the critical dimension size required is not related to the quality factor of the corresponding infinite size filter. Our analysis shows that the critical size is 12 times the filter peak wavelength in the orthogonal dimension for maintaining the filter performance. The 12 times filter wavelength requirement corresponds to the second zero of the Fourier transform of the aperture function.

2.
Phys Chem Chem Phys ; 25(36): 24797-24808, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37671654

RESUMO

Biphenylene networks typically exhibit a metallic electronic nature, while hydrogenation can open the band gap changing it to a semiconductor. This property makes hydrogenated biphenylene a promising candidate for use in semiconductor optoelectronic materials and devices. In this work, three representative configurations of hydrogenated biphenylene, denoted by α, ß and γ, were investigated. The structural, mechanical, electronic, and optical properties of these hydrogenated biphenylene configurations were calculated by first-principles calculations. Band gaps with HSE correction were 4.69, 4.42 and 4.39 eV for α, ß, and γ configurations, respectively. Among these three configurations, ß presents the best electronic performance and special elastic properties (negative Poisson's ratio), while γ exhibits the best elastic properties. In addition, we comprehensively analyze the mechanical properties of these configurations and provide evidence that hydrogenated biphenylene possibly exhibits a negative-Poisson's-ratio along the zigzag and armchair directions when hydrogen atoms are added to biphenylene in certain ways. Furthermore, although the electronic properties of γ are weaker than those of ß, they are also excellent. In addition, the binding energies of ß and γ are relatively lower, which indicates that ß and γ are more stable. Our findings demonstrate that the hydrogenated biphenylene is a promising material with significant application potential in optoelectronic devices.

3.
Phys Chem Chem Phys ; 24(26): 16310-16316, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35758594

RESUMO

Direct-band silicon materials have been a sought-after material for potential applications in silicon photonics and solar cells. Accordingly, methodologies like nanostructure engineering, alloy engineering and strain engineering have been developed. In this work, the particle swarm optimization (PSO) algorithm is used to design direct-band Si-Ge alloys. The findings of phonon computations demonstrate that all these structures are dynamically stable. In addition, ab initio molecular dynamics and elastic constant calculations are carried out, with results indicating these structures are thermodynamically stable at 300 K, as well as being mechanically stable. All of these materials exhibit semiconductor behavior with band gaps of 1.03, 0.68 and 1.37 eV for α, ß and γ phases, respectively, at the HSE06 level. The results of effective mass and mobility of carriers that are important in applications show that holes are more easily transported in all structures, with higher concentration of holes accompanied by lower carrier mobility. Different concentrations of holes nh lead to different limits in the scattering process. When nh is lower than the value of around 1016 cm-3, deformation potential scattering is dominant, while the ionized impurity scattering process limits overall mobility when nh is higher than such a value. Finally, the absorption spectra shows that both α and ß phases have isotropic optical properties in the X- and Y-directions while strong anisotropy can be seen in the Z-direction. However, the γ phase exhibits no notable isotropy. This investigation finds three direct-band and potentially CMOS compatible materials, a finding which will benefit the development of high efficiency emitters or solar cells.

4.
Environ Res ; 214(Pt 1): 113713, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764128

RESUMO

To improve the rationality of weight allocation and weight proportion of different periods in the process of water quality assessment, the comprehensive water quality identification index (CWQII) model was optimized in this study. A new improved comprehensive water quality identification index (ICWQIIG) model based on game theory was established to combine subjective weight and objective weight. Based on ICWQIIG, an improved comprehensive water quality identification index (ICWQIIP) model with phased period combination weights was established to determine determined the weight proportion of phased periods was established. In this study, CWQII, ICWQIIG, and ICWQIIP were used to evaluate the water quality of seventeen sites in Taihu Lake in 2020. The models selected nine water quality parameters and six water quality indicators. The assessment results of water quality classification were between "slightly polluted" and "moderately polluted". The pollution level on the east bank was lower than that on the west bank and north bank. Furthermore, it was also affected by seasonal change, water quality was worse in January and February but better in October and November. The mean value of Iwq calculated by CWQII, ICWQIIG, and ICWQIIP were 2.405, 2.833, and 3.000, respectively. The compared results showed that the ICWQIIG method can more representative identify the location of polluted water than CWQII. Moreover, the ICWQIIP method calculation results not only retained the representative polluted water samples in the ICWQIIG method but can also identify more pollution sites and worse polluted water bodies. Both ICWQIIG and ICWQIIP had high reliability and accuracy in assessment results, and ICWQIIP was more accurate under sufficient data conditions. This study can offer a scientific basis for local water resource management in Taihu Lake, while simultaneously proposing a science-based and valid methodology for the assessment of other similar water bodies.


Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Reprodutibilidade dos Testes , Poluição da Água , Qualidade da Água
5.
Phys Chem Chem Phys ; 24(1): 357-365, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889935

RESUMO

The electronic structures and optical properties of novel 2D biphenylene and hydrogen-terminated nanoribbons of different widths which are cut from a layer of biphenylene were explored via first-principles calculations. The findings of phonon computations demonstrate that such a biphenylene is dynamically stable and shows metallic properties. The crystal orbital Hamilton population analysis indicates that the tetra-ring local structure results in anisotropic mechanical properties. For 1D nanoribbons, their band gaps shrink, and a direct-indirect transition occurs in the band gap as the width increases, transforming the nanoribbon to endow them with metallic characteristics at a certain width. This is attributed to the weak coupling between the tetra-ring atoms, shrinking the direct band gap at the Y point in the Brillouin zone. Finally, the contribution of interband transitions to the dielectric function in 6-, 9-, and 12-armchair biphenylene nanoribbons (ABNRs) was identified. The lowest peak in the imaginary part of the dielectric function ε2 spectrum was mainly a contribution of a Γ-Γ transition. As the width of ABNR increases, the transitions in the x direction become stronger while the transition strength in the y direction is not significantly altered. This investigation extends the understanding of the electronic and optical properties of 2D biphenylene and 1D nanoribbons, which will benefit the practical applications of these materials in optoelectronics and electronics.

6.
Appl Opt ; 60(6): 1609-1614, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33690496

RESUMO

We propose an accurate and rapid azimuth calibration method for polarizing elements in ellipsometry. Over 200 calibrations were achieved simultaneously at different wavelength points in a spectral range of 550-650 nm without any calibrated element. The azimuth of the polarizer was determined from the differential spectral analysis on the ellipse azimuth of reflected light. The information of the ellipse azimuth is experimentally acquired in the spectral range by a rotating polarizing element and a spectrometer. The presented method was performed and verified with Si and Au bulk, respectively, showing reliability and feasibility for efficient and reliable calibration in ellipsometry.

7.
Opt Express ; 28(22): 32456-32467, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114931

RESUMO

In this work, we investigate a gold nanoslits array optical transmission filter with dual dielectric cap layers on top of the metal nanoslits. By integrating a low index of refraction dielectric layer between a high index of refraction dielectric cap layer and the gold nanoslits, a narrow spectral linewidth optical filter with a transmission peak far away from the Rayleigh anomaly wavelength is shown. Furthermore, we propose a figure-of-merit as the ratio of the spectral distance between a transmission peak and the Rayleigh anomaly over the spectral linewidth to characterize the performance of gold nanoslits optical filters. It is shown that dual dielectric cap gold nanoslits array optical filters have significantly larger figure-of-merits than that of traditional single dielectric cap gold nanoslits array optical filters.

8.
Phys Chem Chem Phys ; 22(45): 26383-26389, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179645

RESUMO

Platinum diselenide (PtSe2) has attracted huge attention due to its intriguing physical properties for both fundamental research and promising applications in electronics and optoelectronics. Here, we explored the optical properties of chemical vapor deposition-grown PtSe2 thin films with varied thicknesses via spectroscopic ellipsometry. The dielectric function was extracted by using a Lorentz model over the spectral range of 1.25-6.0 eV. We firstly ascribed the resonant energies, extracted from the Lorentz model, to different interband electronic transitions between valence bands and conduction bands in the Brillouin zone. A predicted exciton is observed at 2.18 eV for the monolayer and the corresponding exciton binding energy is 0.65 eV, in line with previous theoretical calculation and the measured absorption spectra. Additionally, the exciton peak shows a red shift with the increase of thickness, which is the consequence of strong interlayer interaction. These results enrich the fundamental understanding of PtSe2 and are conducive to its potential applications.

9.
Phys Chem Chem Phys ; 20(39): 25467-25475, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30272075

RESUMO

MgxZn1-xO (ZMO) thin films with tunable Mg content were deposited by atomic layer deposition (ALD) on silicon substrates at 190 °C. The elemental and structural properties were acquired by X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy and X-ray diffraction. Spectroscopic ellipsometry measurements were performed to reveal the evolution of the dielectric functions and critical points in the ZMO thin films by point-by-point fit in the photon energy range of 1.2-6.0 eV. The dependence of the dielectric functions on doping content is clearly demonstrated and physically explained. The critical point energies and the types of interband optical transitions were extracted from standard lineshape analysis of the second derivatives of the dielectric functions. The critical point features were discussed in terms of band structure modification and structural homogeneity arisen by introducing the Mg dopant into the films. Controlling these transitions by changing the doping content will be of practical significance in emerging ZMO-based thin-film photonic and optoelectronic devices.

10.
Phys Chem Chem Phys ; 19(19): 12022-12031, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28443855

RESUMO

Centimeter-scale WS2 ultrathin films were synthesized on sapphire substrates, and they showed highly oriented crystallographic growth along the c axis. Afterwards, the as-grown samples were systematically characterized using various detection methods. Reliable values of the roughness layer thickness and the film thickness were extracted using both atomic force microscopy (AFM) and spectroscopic ellipsometry (SE), and identified using Raman spectroscopy as well. The expansion and tensile strain along the [001] direction were discovered using X-ray diffraction (XRD) measurements. Accurate dielectric functions of WS2 films were derived from the point-by-point fitting results. The critical points (CPs) of WS2, which have not been reported so far, are precisely extracted from the standard critical point (SCP) model. Their origins are uniquely assigned to different interband electronic transitions in the Brillouin zone, including some novel optical structures above 3 eV, which were not investigated in earlier studies. In this work, it is found that dielectric functions are thickness-dependent, while CPs have an opposite nature, and their intrinsic mechanisms are revealed. The as-obtained results can be expected to help people develop more extensive applications of WS2.

11.
Opt Express ; 24(22): A1431-A1443, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828527

RESUMO

Organic-inorganic perovskites were fabricated through a one-step procedure with different levels of hydration water in precursor solutions. The optical properties of CH3NH3PbI3 films were investigated through spectroscopic ellipsometry and photoluminescence measurements. With the measured optical constants, the efficiency limit of perovskite solar cells is predicted with a detailed balance model. By comparing the optical measurement to that of planar heterojunction solar cells, we conclude that the radiative efficiency and porosity of the perovskite film significantly influence the performance of perovskite solar cells. An optimized hydration-water concentration is obtained for the 3CH3NH3I:1PbAc2•xH2O precursor solution. The results can provide guidance for further optimization of the device performance of perovskite solar cells by utilizing hydration water.

12.
Opt Lett ; 41(21): 4907-4910, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805647

RESUMO

A new method for measuring the dielectric functions change with the thickness of nanometal thin films was proposed. To confirm the accuracy and reliability of the method, a nano-thin wedge-shaped gold (Au) film with continuously varied thicknesses was designed and prepared on K9 glass by direct-current-sputtering (DC-sputtering). The thicknesses and the dielectric functions in the wavelength range of 300-1100 nm of the nano-thin Au films were obtained by fitting the ellipsometric parameters with the Drude and critical points model. Results show that while the real part of the dielectric function (ϵ1) changes marginally with increasing film thickness, the imaginary part (ϵ2) decreases drastically with the film thickness, approaching a stable value when the film thickness increases up to about 42 nm. This method is particularly useful in the study of thickness-dependent optical properties of nano-thin film.

13.
Phys Chem Chem Phys ; 18(4): 3316-21, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26752103

RESUMO

The band gap and defect features of ultrathin ZrO2 films with varying thicknesses have been investigated by spectroscopic ellipsometry through the point-by-point data inversion method. The ε2-sprectra in the 3-6 eV range are extracted based on an optical model consisting of a Si substrate/effective ZrO2 film/air ambient structure where the effective ZrO2 film is a combination of interfacial layers and ZrO2. Evident widening of the band gap with a reducing size is observed when the effective ZrO2 films are below a critical thickness, somewhere between 8.80 nm and 17.13 nm. This is due to quantum-confinement and amorphous effects. Moreover, the sub-band-gap defects at interfacial layers and in bulk ZrO2 are identified and present strong thickness dependence as well. The interfacial defects at 3.26, 4.13, 4.43, and 4.77 eV mainly exist below the critical thickness and exhibit a significant suppression with increasing film thickness. The bulk defects at 4.15 eV and 4.46 eV dominate in ZrO2 films once they are over the critical thickness. The evolution of the band gap and defects is closely related to variance in the electronic structure of amorphous ZrO2. Our results may be helpful in understanding controversial problems concerning the size effect on ultrathin high-k oxide films and exploring the further miniaturization of electronic devices based on them.

14.
Opt Express ; 22 Suppl 7: A1843-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607498

RESUMO

The optical properties and thermal stability of a 6-layered metal/dielectric film structure are investigated in this work. A high optical absorption average of > 98% is achieved in the broad spectral range of 250-1200 nm with experiment results, in good agreement with our simulated results. The samples have a typical layered structure of: SiO(2)(57.3 nm)/Ti(5.7 nm)/SiO(2) (67.1 nm)/Ti(11.6 nm)/SiO(2)(51.4 nm)/Cu(>100 nm), deposited on optically polished Si or K9-glass substrates by magnetron sputtering. The sample of the 6-layered metal/dielectric film structure has an AM1.5G solar absorptance of 95.5% with the features of low thermal emittance of 0.136 at 700K and good thermal stability, and will be potentially suitable for practical application in high-efficiency solar absorber devices in many fields.

15.
Sci Rep ; 14(1): 10198, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702324

RESUMO

The absorption of electromagnetic waves in a broadband frequency range with polarization insensitivity and incidence-angle independence is greatly needed in modern technology applications. Many structures based on metamaterials have been suggested for addressing these requirements; these structures were complex multilayer structures or used special materials or external electric components, such as resistive ones. In this paper, we present a metasurface structure that was fabricated simply by employing the standard printed-circuit-board technique but provides a high absorption above 90% in a broadband frequency range from 12.35 to 14.65 GHz. The metasurface consisted of structural unit cells of 4 symmetric substructures assembled with a metallic bar pattern, which induced broadband absorption by using a planar resistive interaction in the pattern without a real resistive component. The analysis, simulation, and measurement results showed that the metasurface was also polarization insensitive and still maintained an absorption above 90% at incident angles up to 45°. The suggested metasurface plays a role in the fundamental design and can also be used to design absorbers at different frequency ranges. Furthermore, further enhancement of the absorption performance is achieved by improved design and fabrication.

16.
Water Res ; 243: 120337, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473509

RESUMO

To optimize the water quality index (WQI) assessment model, this study upgraded the parameter weight values and aggregation functions. We determined the combined weights based on machine learning and game theory to improve the accuracy of the models, and proposed new aggregation functions to reduce the uncertainty of the model. A new water quality assessment system was established, and took the Chaobai River Basin as a case study. To optimize the weight, two combined weights were established based on game theory. The weight CWAE was combined by the Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM). The weight CWAL was combined by AHP and machine learning (LightGBM). CWAL was judged to be an optimal composite weight by comparing the coefficient of variation (CV) values and the Kaiser-Meyer-Olkin (KMO) extracted values. To reduce the uncertainty of the model, we proposed two aggregation functions, the Sinusoidal Weighted Mean (SWM) and the Log-weighted Quadratic Mean (LQM). The three water quality assessment models (WQIS, WQIL and WQIW) were established based on the optimal weights besides. All three models had good reliability. Both WQIS and WQIW models had low eclipsing problems (25.49% and 18.63%). The accuracy of the models was ranked as WQIS > WQIW > WQIL. The uncertainty of WQIs (0.000) in assessing poor water quality was low, and so was WQIW (0.259) in assessing good water quality. Overall, the WQIS model was recommended for assessing poor water quality and the WQIW model was recommended for assessing good water quality. The assessment results of WQIS showed that the Chaobai River Basin was "slightly polluted", and the water quality upstream was better than that downstream. TN was the main pollutant in the basin, and there was slight pollution with CODMn, CODCr, BOD5, etc. There was little metal contamination, only a few months exceeded Class I. The model established in this study can provide a reference for the same type work of water quality assessment. The assessment results can provide a scientific basis for the protection of the regional water environment.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Rios , Poluentes Químicos da Água/análise , Aprendizado de Máquina , China
17.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770343

RESUMO

It is of great technological importance in the field of plasmonic color generation to establish and understand the relationship between optical responses and the reflectance of metallic nanoparticles. Previously, a series of indium nanoparticle ensembles were fabricated using electron beam evaporation and inspected using spectroscopic ellipsometry (SE). The multi-oscillator Lorentz-Drude model demonstrated the optical responses of indium nanoparticles with different sizes and size distributions. The reflectance spectra and colorimetry characteristics of indium nanoparticles with unimodal and bimodal size distributions were interpreted based on the SE analysis. The trends of reflectance spectra were explained by the transfer matrix method. The effects of optical constants n and k of indium on the reflectance were demonstrated by mapping the reflectance contour lines on the n-k plane. Using oscillator decomposition, the influence of different electron behaviors in various indium structures on the reflectance spectra was revealed intuitively. The contribution of each oscillator on the colorimetry characteristics, including hue, lightness and saturation, were determined and discussed from the reflectance spectral analysis.

18.
Nanoscale Adv ; 5(15): 3896-3904, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496620

RESUMO

Over decades of research on photoluminescence (PL) of silicon quantum dots (Si-QDs), extensive exploratory experiments have been conducted to find ways to improve the photoluminescence quantum yield. However, the complete physical picture of Si-QD luminescence is not yet clear and needs to be studied in depth. In this work, which considers the quantum size effect and surface effect, the optical properties of Si-QDs with different sizes and surface terminated ligands were calculated based on first principles calculations. The results show that there are significant differences in the emission wavelength and emission intensity of Si-QD interface states connected by different ligands, among which the emission of silicon-oxygen double bonds is the strongest. When the size of the Si-QD increases, the influence of the surface effect weakens, and only the silicon-oxygen double bonds still localize the charge near the ligand, maintaining a high-intensity luminescence. In addition, the presence of surface dangling bonds also affects luminescence. This study deepens the understanding of the photoluminescence mechanism of Si-QDs, and provides a direction for both future improvement of the photoluminescence quantum efficiency of silicon nanocrystals and for fabricating silicon-based photonic devices.

19.
Adv Sci (Weinh) ; 10(6): e2205903, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36596707

RESUMO

Coherent optical control of the magnetization in ferromagnetic (FM) mediums using ultrafast nonthermal effect paves a promising avenue to improve the speed and repetition rate of the magnetization manipulation. Whereas previously, only heat-induced or helicity-dependent magnetization dynamics are demonstrated in metallic ferromagnets. Here, the linearly-polarized light control of magnetization is demonstrated in FM Co coupled with ferroelectric (FE) BiFeO3 by tuning the light polarization direction. It is revealed that in the Co/BiFeO3 heterostructure excited by femtosecond laser pulses, the magnetization precession amplitude follows a sinusoidal dependence on the laser polarization direction. This nonthermal control of coherent magnetization rotation is attributed to the optical rectification effect in the BiFeO3 layer, which yields a FE polarization depending on the light polarization, and the subsequent modulation of magnetic energy in Co by the electrostriction-induced strain. This work demonstrates an effective route to nonthermally manipulate the ultrafast magnetization dynamics in metallic ferromagnets.

20.
Opt Express ; 20(27): 28953-62, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263136

RESUMO

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO(2)(90nm)/Cr(10nm)/SiO(2)(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method. The results indicate that the metal/dielectric film structure has a good spectral selective property suitable for solar thermal applications with solar absorption efficiency higher than 95% in the 400-1200nm wavelength range and a very low thermal emittance in the infrared region. The solar selective absorber with the thin Cr layer has shown a good thermal stability up to the temperature of 873K under vacuum atmosphere. The experimental results are in good agreement with the calculated spectral results.


Assuntos
Cromo/química , Membranas Artificiais , Nanopartículas/química , Energia Solar , Absorção , Cromo/efeitos da radiação , Transferência de Energia , Teste de Materiais , Nanopartículas/efeitos da radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA