Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Opt Express ; 31(11): 17268-17282, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381465

RESUMO

This paper addresses the challenge of understanding the dynamics of the interaction between partially evaporated metal and the liquid metal melt pool in electron beam melting (EBM), an additive manufacturing technology. Few contactless, time-resolved sensing strategies have been applied in this environment. We used tunable diode-laser absorption spectroscopy (TDLAS) to measure vanadium vapor in the EBM of a Ti-6Al-4V alloy at 20 kHz. Our study includes, to our knowledge, the first-time use of a blue GaN vertical cavity surface emitting laser (VCSEL) for spectroscopy. Our results reveal a plume that is roughly symmetrical with a uniform temperature. Moreover, we believe this work presents the first application of TDLAS for time-resolved thermometry of a minor alloying element in EBM.

2.
Nature ; 528(7583): 539-43, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26701055

RESUMO

Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

3.
J Synchrotron Radiat ; 25(Pt 5): 1467-1477, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179187

RESUMO

The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly helpful in guiding efforts to reduce or eliminate microstructural defects in additively manufactured parts.

5.
BMC Cancer ; 15: 647, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424146

RESUMO

BACKGROUND: Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions. METHODS: Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKß is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium. RESULTS: We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the activated ductal tissue. CONCLUSIONS: These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma in Situ/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Neoplasias da Mama/genética , Carcinoma in Situ/genética , Carcinoma Ductal de Mama/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Epitélio/metabolismo , Epitélio/patologia , Feminino , Expressão Gênica , Humanos , Hiperplasia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Gradação de Tumores , Especificidade de Órgãos/genética
6.
Materials (Basel) ; 17(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276449

RESUMO

In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets.

7.
Science ; 379(6627): 89-94, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603080

RESUMO

Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.

8.
Rev Sci Instrum ; 93(4): 043707, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489882

RESUMO

In powder-bed-based metal additive manufacturing (AM), the visualization and analysis of the powder spreading process are critical for understanding the powder spreading dynamics and mechanisms. Unfortunately, the high spreading speeds, the small size of the powder, and the opacity of the materials present a great challenge for directly observing the powder spreading behavior. Here, we report a compact and flexible powder spreading system for in situ characterization of the dynamics of the powders during the spreading process by high-speed x-ray imaging. The system enables the tracing of individual powder movement within the narrow gap between the recoater and the substrate at variable spreading speeds from 17 to 322 mm/s. The instrument and method reported here provide a powerful tool for studying powder spreading physics in AM processes and for investigating the physics of granular material flow behavior in a confined environment.

9.
Nat Commun ; 13(1): 1079, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228541

RESUMO

The process instabilities intrinsic to the localized laser-powder bed interaction cause the formation of various defects in laser powder bed fusion (LPBF) additive manufacturing process. Particularly, the stochastic formation of large spatters leads to unpredictable defects in the as-printed parts. Here we report the elimination of large spatters through controlling laser-powder bed interaction instabilities by using nanoparticles. The elimination of large spatters results in 3D printing of defect lean sample with good consistency and enhanced properties. We reveal that two mechanisms work synergistically to eliminate all types of large spatters: (1) nanoparticle-enabled control of molten pool fluctuation eliminates the liquid breakup induced large spatters; (2) nanoparticle-enabled control of the liquid droplet coalescence eliminates liquid droplet colliding induced large spatters. The nanoparticle-enabled simultaneous stabilization of molten pool fluctuation and prevention of liquid droplet coalescence discovered here provide a potential way to achieve defect lean metal additive manufacturing.

10.
Materials (Basel) ; 15(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057247

RESUMO

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change in the depression zone and melt pool geometries. For spatter dynamics, small variation (10 µm, 11%) of the laser beam size could lead to over 40% change in the overall volume of the spatter generated. The responses of the SLM dynamics to small variations of processing parameters revealed in this work are useful for understanding the process uncertainties in the SLM process.

11.
Materials (Basel) ; 15(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35160651

RESUMO

The powder bed-based additive manufacturing (AM) process contains uncertainties in the powder spreading process and powder bed quality, leading to problems in repeatability and quality of the additively manufactured parts. This work focuses on identifying the uncertainty induced by particle size distribution (PSD) on powder flowability and the laser melting process, using Ti6Al4V as a model material. The flowability test results show that the effect of PSDs on flowability is not linear, rather the PSDs near dense packing ratios cause significant reductions in flowability (indicated by the increase in the avalanche angle and break energy of the powders measured by a revolution powder analyzer). The effects of PSDs on the selective laser melting (SLM) process are identified by using in-situ high-speed X-ray imaging to observe the melt pool dynamics during the melting process. The results show that the powder beds made of powders with dense packing ratios exhibit larger build height during laser melting. The effects of PSD with efficient packing on powder flowability and selective laser melting process revealed in this work are important for understanding process uncertainties induced by feedstock powders and for designing mitigation approaches.

12.
Breast Cancer Res ; 13(4): R83, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21884585

RESUMO

INTRODUCTION: Metastasis from primary tumor to the lungs is a major cause of the mortality associated with breast cancer. Both immune and inflammatory responses impact whether circulating mammary tumor cells successfully colonize the lungs leading to established metastases. Nuclear factor -kappaB (NF-κB) transcription factors regulate both immune and inflammatory responses mediated in part by the activities of macrophages. Therefore, NF-κB activity specifically within macrophages may be a critical determinant of whether circulating tumor cells successfully colonize the lungs. METHODS: To investigate NF-κB signaling within macrophages during metastasis, we developed novel inducible transgenic models which target expression of the reverse tetracycline transactivator (rtTA) to macrophages using the cfms promoter in combination with inducible transgenics that express either an activator (cIKK2) or an inhibitor (IκBα-DN). Doxycyline treatment led to activation or inhibition of NF-κB within macrophages. We used a tail vein metastasis model with mammary tumor cell lines established from MMTV-Polyoma Middle T-Antigen-derived tumors to investigate the effects of modulating NF-κB in macrophages during different temporal windows of the metastatic process. RESULTS: We found that activation of NF-κB in macrophages during seeding leads to a reduction in lung metastases. The mechanism involved expression of inflammatory cytokines and reactive oxygen species, leading to apoptosis of tumor cells and preventing seeding in the lung. Activation of NF-κB within macrophages after the seeding phase has no significant impact on establishment of metastases. CONCLUSIONS: Our results have identified a brief, defined window in which activation of NF-κB has significant anti-metastatic effects and inhibition of NF-κB results in a worse outcome.


Assuntos
Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/patologia , NF-kappa B/metabolismo , Animais , Antígeno CD11b/metabolismo , Quimiocina CXCL9/metabolismo , Feminino , Floxuridina/farmacologia , Quinase I-kappa B/genética , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , Fenótipo , Polyomavirus/patogenicidade , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio , Receptores de Fator Estimulador de Colônias/genética , Transdução de Sinais , Veias/virologia
13.
Materials (Basel) ; 14(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072400

RESUMO

Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capability of printing complex metal parts directly from digital models. Between two available emission modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly contain pores, which degrade their mechanical properties. In this study, we reveal pore formation mechanisms during PW-LPBF in real time by using an in-situ high-speed synchrotron x-ray imaging technique. We found that vapor depression collapse proceeds when the laser irradiation stops within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that the melt ejection and rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and subsequent formation of a pore pattern in the melted track. The pore formation dynamics revealed here may provide guidance on developing pore elimination approaches.

14.
Nat Commun ; 10(1): 4506, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570717

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Nat Commun ; 10(1): 3088, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300676

RESUMO

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the melt pool during the LPBF process. The thermocapillary force driven pore elimination mechanism revealed here may guide the development of 3D printing approaches to achieve pore-free 3D printing of metals.

16.
Sci Rep ; 8(1): 15079, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305675

RESUMO

Powder spreading is a key step in the powder-bed-based additive manufacturing process, which determines the quality of the powder bed and, consequently, affects the quality of the manufactured part. However, powder spreading behavior under additive manufacturing condition is still not clear, largely because of the lack of particle-scale experimental study. Here, we studied particle-scale powder dynamics during the powder spreading process by using in-situ high-speed high-energy x-ray imaging. Evolution of the repose angle, slope surface speed, slope surface roughness, and the dynamics of powder clusters at the powder front were revealed and quantified. Interactions of the individual metal powders, with boundaries (substrate and container wall), were characterized, and coefficients of friction between the powders and boundaries were calculated. The effects of particle size on powder flow dynamics were revealed. The particle-scale powder spreading dynamics, reported here, are important for a thorough understanding of powder spreading behavior in the powder-bed-based additive manufacturing process, and are critical to the development and validation of models that can more accurately predict powder spreading behavior.

17.
Nat Commun ; 8: 14178, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098147

RESUMO

Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage.

19.
Sci Rep ; 7(1): 3602, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620232

RESUMO

We employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from ß to α ' phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.

20.
Zhonghua Yan Ke Za Zhi ; 42(6): 513-6, 2006 Jun.
Artigo em Zh | MEDLINE | ID: mdl-16857130

RESUMO

OBJECTIVE: To develop and set up a new culture system, which can apply pressure to cultured cells with open cycling air. The effects of this new system on the pH value, HCO(3)(-) concentration, O(2) pressure (pO(2)), CO2 pressure (pCO(2)) and the proliferation of retinal pigment epithelium (RPE) were tested to evaluate its efficiency in the study of glaucoma. METHODS: In the open cycling air pressure control culture system, the pressure inside the culture flasks was controlled by increase or decrease of the perfuse airflow. The influence of different culture systems (normal pressure culture system, open cycling air pressure control system and occlusive pressure control system) on the pH value, HCO(3)(-) concentration, pO(2), pCO(2) and proliferation of RPE were tested. The data were analyzed with SPSS software. RESULTS: The open cycling air pressure control culture system worked effectively, the pressure inside the culture flask can be controlled from 0 to 100 mm Hg. The difference of pH value, HCO(3)(-) concentration, pO(2), and pCO(2) of culture medium and the proliferation of RPE between normal pressure culture system and open cycling air pressure control system were not significant (P = 0.927, 0.887, 0.818, 0.770, 0.719, respectively). There was significant difference in these data between normal pressure culture system and occlusive pressure control system (P = 0.001, 0.000, 0.000, 0.000, 0.000, respectively). CONCLUSIONS: A new designed standard culture system applying pressure to cells with open cycling air was effective at pressure controlling and pH value, HCO(3)(-) concentration, pO(2) and pCO(2) controlling. This system may act as an ideal model in the experimental study of glaucoma.


Assuntos
Técnicas de Cultura de Células/instrumentação , Glaucoma , Epitélio Pigmentado Ocular/citologia , Pressão do Ar , Células Cultivadas , Meios de Cultura , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA