Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 136(21): 214310, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22697546

RESUMO

We devise a theoretical description for the response of nitrogen molecules (N(2)) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N(2), a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N(2): a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N(2)(2+), and molecular fragmentation are explained.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016403, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11800786

RESUMO

The computation of superconfiguration partition functions relies upon independent electron statistics, with electron-electron contributions included as an average first-order correction factor. The decomposition into a first-order correction and reference independent electron system has degrees of freedom not exploited by current methods. We present a derivation for the conventional choice of decomposition and propose a different method for obtaining an optimal decomposition for each superconfiguration. This constitutes an alternative procedure to recomputing self-consistent fields for the refinement of superconfiguration partition functions. Numerical results are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA