Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(43): 15781-15794, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31488543

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the pathological remodeling of air sacs as a result of excessive accumulation of extracellular matrix (ECM) proteins, but the mechanism governing the robust protein expression is poorly understood. Our recent findings demonstrate that alternative polyadenylation (APA) caused by NUDT21 reduction is important for the increased expression of fibrotic mediators and ECM proteins in lung fibroblasts by shortening the 3'-untranslated regions (3'-UTRs) of mRNAs and stabilizing their transcripts, therefore activating pathological signaling pathways. Despite the importance of NUDT21 reduction in the regulation of fibrosis, the underlying mechanisms for the depletion are unknown. We demonstrate here that NUDT21 is depleted by TGFß1. We found that miR203, which is increased in IPF, was induced by TGFß1 to target the NUDT21 3'-UTR, thus depleting NUDT21 in human and mouse lung fibroblasts. TGFß1-mediated NUDT21 reduction was attenuated by the miR203 inhibitor antagomiR203 in fibroblasts. TGFß1 transgenic mice revealed that TGFß1 down-regulates NUDT21 in fibroblasts in vivo Furthermore, TGFß1 promoted differential APA of fibrotic genes, including FGF14, RICTOR, TMOD2, and UCP5, in association with increased protein expression. This unique differential APA signature was also observed in IPF fibroblasts. Altogether, our results identified TGFß1 as an APA regulator through NUDT21 depletion amplifying pulmonary fibrosis.


Assuntos
Regiões 3' não Traduzidas/genética , Pulmão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Regulação para Baixo/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Biochem Biophys Res Commun ; 503(2): 856-862, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29928883

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a life-threatening disease that has a poor prognosis and low survival rate. Cleavage factor Im 25 (CFIm25) is a RNA-binding protein that if down-regulated causes 3'UTR shortening and thus promotes the transcript stability of target genes. It is not clear whether CFIm25 and alternative polyadenylation (APA) play a role during cancer development. The purpose of this study is to explore the role of CFIm25 in lung cancer cell proliferation. METHODS: CFIm25 was knocked down in A549 cells. Western blots were carried out to determine the protein expression of CFIm25, insulin growth factor 1 receptor (IGF1R), CyclinD1 (CCND1) and TP53. Real-time qRT PCR was performed to determine the total transcript levels of CFIm25 targets and the normalized fold changes in their distal PAS (dPAS) usage. Immunofluorescence was carried out to check the expression of CFIm25, IGF1R and CCND1. Cell proliferation over time was determined using the WST-1 reagent. RESULTS: The transcript levels of CCND1 and GSK3ß were significantly increased and the dPAS usage of several oncogenes (IGF1R, CCND1 and GSK3ß) were decreased after CFIm25 knockdown. The protein level of IGF1R was increased, and we detected increased percentage of CCND1 positive cells and cell proliferation over time in CFIm25 knockdown cells. In addition, the mRNA and APA analysis of IGF1R using patient RNA-seq data from the Cancer Genome Atlas indicated that IGF1R is shortened in both lung adenocarcinoma and lung squamous cell carcinoma compared to normal controls. CONCLUSIONS: Our findings suggest that CFIm25 plays an important role in lung cancer cell proliferation through regulating the APA of oncogenes, including IGF1R, and promoting their protein expression.


Assuntos
Proliferação de Células/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Poliadenilação/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas/genética , Células A549 , Processamento Alternativo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Genéticos , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
3.
FASEB J ; 31(11): 4745-4758, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28701304

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a deadly chronic lung disease. Extracellular accumulation of adenosine and subsequent activation of the ADORA2B receptor play important roles in regulating inflammation and fibrosis in IPF. Additionally, alternatively activated macrophages (AAMs) expressing ADORA2B have been implicated in mediating adenosine's effects in IPF. Although hypoxic conditions are present in IPF, hypoxia's role as a direct modulator of macrophage phenotype and identification of factors that regulate ADORA2B expression on AAMs in IPF is not well understood. In this study, an experimental mouse model of pulmonary fibrosis and lung samples from patients with IPF were used to examine the effects and interactions of macrophage differentiation and hypoxia on fibrosis. We demonstrate that hypoxia-inducible factor 1-α (HIF1A) inhibition in late stages of bleomycin-induced injury attenuates pulmonary fibrosis in association, with reductions in ADORA2B expression in AAMs. Additionally, ADORA2B deletion or pharmacological antagonism along with HIF1A inhibition disrupts AAM differentiation and subsequent IL-6 production in cultured macrophages. These findings suggest that hypoxia, through HIF1A, contributes to the development and progression of pulmonary fibrosis through its regulation of ADORA2B expression on AAMs, cell differentiation, and production of profibrotic mediators. These studies support a potential role for HIF1A or ADORA2B antagonists in the treatment of IPF.-Philip, K., Mills, T. W., Davies, J., Chen, N.-Y., Karmouty-Quintana, H., Luo, F., Molina, J. G., Amione-Guerra, J., Sinha, N., Guha, A., Eltzschig, H. K., Blackburn, M. R. HIF1A up-regulates the ADORA2B receptor on alternatively activated macrophages and contributes to pulmonary fibrosis.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos Alveolares , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Receptor A2B de Adenosina/biossíntese , Regulação para Cima , Adulto , Idoso , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Receptor A2B de Adenosina/genética
4.
FASEB J ; 30(2): 874-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527068

RESUMO

Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.


Assuntos
Adenosina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Fibrose Pulmonar Idiopática/patologia , Camundongos
5.
Pediatr Res ; 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832580

RESUMO

BackgroundHyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response and it disrupts normal alveolarization in the developing newborn lung. Adenosine is a signaling molecule that is generated extracellularly by ecto-5'-nucleotidase (CD73) in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to have a protective role in acute injury situations; however, chronic elevations have been associated with detrimental changes in chronic lung diseases. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which are detrimental to the newborn lung.MethodsC57Bl/6 and CD73-/- mice were exposed to 95% oxygen, 70% oxygen, or room air. Adenosine concentration and markers of pulmonary inflammation and lung development were measured.ResultsExposure to hyperoxia caused pulmonary inflammation and disrupted normal alveolar development in association with increased pulmonary adenosine levels. Loss of CD73-mediated extracellular adenosine production led to decreased survival with exposure to 95% oxygen, and exacerbated pulmonary inflammation and worsened lung development with 70% oxygen exposure.ConclusionExposure to hyperoxia causes lung injury associated with an increase in adenosine concentration, and loss of CD73-mediated adenosine production leads to worsening of hyperoxic lung injury.Pediatric Research advance online publication, 23 August 2017; doi:10.1038/pr.2017.176.

6.
Am J Respir Cell Mol Biol ; 54(4): 574-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26414702

RESUMO

Group III pulmonary hypertension (PH) is a highly prevalent and deadly lung disorder with limited treatment options other than transplantation. Group III PH affects patients with ongoing chronic lung injury, such as idiopathic pulmonary fibrosis (IPF). Between 30 and 40% of patients with IPF are diagnosed with PH. The diagnosis of PH has devastating consequences to these patients, leading to increased morbidity and mortality, yet the molecular mechanisms involved in the development of PH in patients with chronic lung disease remain elusive. Our hypothesis was that the hypoxic-adenosinergic system is enhanced in patients with group III PH compared with patients with IPF with no PH. Explanted lung tissue was analyzed for markers of the hypoxic-adenosine axis, including expression levels of hypoxia-inducible factor (HIF)-1A, adenosine A2B receptor, CD73, and equilibrative nucleotide transporter-1. In addition, we assessed whether altered mitochondrial metabolism was present in these samples. Increased expression of HIF-1A was observed in tissues from patients with group III PH. These changes were consistent with increased evidence of adenosine accumulation in group III PH. A novel observation of our study was of evidence suggesting altered mitochondrial metabolism in lung tissue from group III PH leading to increased succinate levels that are able to further stabilize HIF-1A. Our data demonstrate that the hypoxic-adenosine axis is up-regulated in group III PH and that subsequent succinate accumulation may play a part in the development of group III PH.


Assuntos
Adenosina/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Idoso , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fibrose Pulmonar/metabolismo , Remodelação Vascular
7.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L238-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317687

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-ß activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Hipertensão Pulmonar/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos Alveolares/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Regulação para Baixo , Expressão Gênica , Humanos , Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/fisiopatologia , Interleucina-6/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Isoformas de Proteínas , Interferência de RNA
8.
FASEB J ; 29(1): 50-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318478

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH.


Assuntos
Hipertensão Pulmonar/etiologia , Fibrose Pulmonar Idiopática/etiologia , Receptor A2B de Adenosina/deficiência , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/fisiopatologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/fisiologia , Receptor A2B de Adenosina/genética , Receptor A2B de Adenosina/fisiologia
9.
J Immunol ; 193(7): 3755-68, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172494

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with progressive fibrosis and death within 2-3 y of diagnosis. IPF incidence and prevalence rates are increasing annually with few effective treatments available. Inhibition of IL-6 results in the attenuation of pulmonary fibrosis in mice. It is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα, or trans signaling, mediated by soluble IL-6Rα (sIL-6Rα). Our study assessed the role of sIL-6Rα in IPF. We demonstrated elevations of sIL-6Rα in IPF patients and in mice during the onset and progression of fibrosis. We demonstrated that protease-mediated cleavage from lung macrophages was important in production of sIL-6Rα. In vivo neutralization of sIL-6Rα attenuated pulmonary fibrosis in mice as seen by reductions in myofibroblasts, fibronectin, and collagen in the lung. In vitro activation of IL-6 trans signaling enhanced fibroblast proliferation and extracellular matrix protein production, effects relevant in the progression of pulmonary fibrosis. Taken together, these findings demonstrate that the production of sIL-6Rα from macrophages in the diseased lung contributes to IL-6 trans signaling that in turn influences events crucial in pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Interleucina-6/imunologia , Macrófagos Alveolares/imunologia , Fibrose Pulmonar/imunologia , Receptores de Interleucina-6/imunologia , Transdução de Sinais/imunologia , Animais , Colágeno/imunologia , Modelos Animais de Doenças , Feminino , Fibronectinas/imunologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/terapia , Interleucina-6/genética , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Miofibroblastos/imunologia , Miofibroblastos/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
10.
Lipids Health Dis ; 14: 17, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25873088

RESUMO

BACKGROUND: The +294T/C polymorphism in the peroxisome proliferator-activated receptor delta (PPARD) gene is associated with hyperlipidemia in several younger populations, but results are still inconsistence across ethnic groups and its possible impact on the lipid profiles of long-lived individuals remains unexploited. Here, we aimed to evaluate the possible correlation between PPARD +294T/C and serum lipid levels in a long-lived population in Bama, a region known for longevity situated in Guangxi, China. METHODS: Genotyping of PPARD +294T/C polymorphism was conducted in 505 long-lived inhabitants (aged 90 and above, long-lived group, LG) and 468 healthy controls (aged 60-75, non-long-lived group, non-LG) recruited from Bama area. RESULTS: No difference in allelic and genotypic frequencies was found between the two groups (P>0.05). However, C-allele and C-genotype (TC and CC) were significantly more frequent in the females of non-LG than were LG after sex stratification. CC carriers exhibited higher LDL-C level in LG (P<0.05) but lower TC, TG and LDL-C in non-LG (P<0.05 for each) than TT carriers; C allele carriers (TC/CC) in LG exhibited higher TC, TG, and LDL-C levels as compared with the same genotype and the same lipid parameter in non-LG (P<0.05 for each). LDL-C in LG was correlated with genotypes while TC, TG, and LDL-C in non-LG were correlated with genotypes (P<0.05-0.001). CONCLUSION: Our results suggest that there were different impact patterns of PPARD +294T/C polymorphism on lipid profiles between long-lived cohort and average population in Bama area and this may be one of the genetic bases of its longevity.


Assuntos
Lipídeos/sangue , Longevidade/genética , PPAR delta/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
11.
Am J Respir Crit Care Med ; 190(12): 1402-12, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25358054

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with few therapeutic options. Apoptosis of alveolar epithelial cells, followed by abnormal tissue repair characterized by hyperplastic epithelial cell formation, is a pathogenic process that contributes to the progression of pulmonary fibrosis. However, the signaling pathways responsible for increased proliferation of epithelial cells remain poorly understood. OBJECTIVES: To investigate the role of deoxycytidine kinase (DCK), an important enzyme for the salvage of deoxynucleotides, in the progression of pulmonary fibrosis. METHODS: DCK expression was examined in the lungs of patients with IPF and mice exposed to bleomycin. The regulation of DCK expression by hypoxia was studied in vitro and the importance of DCK in experimental pulmonary fibrosis was examined using a DCK inhibitor and alveolar epithelial cell-specific knockout mice. MEASUREMENTS AND MAIN RESULTS: DCK was elevated in hyperplastic alveolar epithelial cells of patients with IPF and in mice exposed to bleomycin. Increased DCK was localized to cells associated with hypoxia, and hypoxia directly induced DCK in alveolar epithelial cells in vitro. Hypoxia-induced DCK expression was abolished by silencing hypoxia-inducible factor 1α and treatment of bleomycin-exposed mice with a DCK inhibitor attenuated pulmonary fibrosis in association with decreased epithelial cell proliferation. Furthermore, DCK expression, and proliferation of epithelial cells and pulmonary fibrosis was attenuated in mice with conditional deletion of hypoxia-inducible factor 1α in the alveolar epithelium. CONCLUSIONS: Our findings suggest that the induction of DCK after hypoxia plays a role in the progression of pulmonary fibrosis by contributing to alveolar epithelial cell proliferation.


Assuntos
Desoxicitidina Quinase/fisiologia , Hipóxia/complicações , Fibrose Pulmonar Idiopática/etiologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/enzimologia
12.
Lipids Health Dis ; 13: 104, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24968810

RESUMO

BACKGROUND: Variants in the Methylenetetrahydrofolate reductase (MTHFR) gene may result in a lowered catalytic activity and associate with subsequent elevated serum homocysteine (Hcy) concentration, abnormal DNA synthesis and methylation, cardiovascular risk, and unhealthy aging. Several investigations on the relationship of MTHFR C677T polymorphism with serum lipid profile and longevity have been conducted in some populations, but the findings remain mixed. Herein, we sought to look at the association between MTHFR C677T and lipid profile in a longevous cohort in Bama, a well-known home of longevity in China. METHODS: Genotyping of MTHFR C677T was undertaken in 516 long-lived inhabitants (aged 90 and older, long-lived group, LG) and 493 healthy controls (aged 60-75, non-long-lived group, non-LG) recruited from Bama area. Correlation between MTHFR genotypes and lipids was then evaluated. RESULTS: T allele and TT genotype were significantly more prevalent in LG (P=0.001 and 0.002, respectively), especially in females, than in non-LG. No difference in the tested lipid measures among MTHFR C677T genotypes was observed in LG, non-LG and total population (P>0.05 for all). However, female but not male T carriers exhibited higher TC and LDL-C levels than did T noncarriers in the total population and in LG after stratification by sex (P<0.05 for each). These differences did not however remain through further subdivision by hyperlipidemia and normolipidemia. CONCLUSION: The higher prevalence of MTHFR 677 T genotypes and its modest unfavorable impact on lipids in Bama long-lived individuals may imply an existence of other protective genotypes which require further determination.


Assuntos
Longevidade/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
13.
Am J Respir Cell Mol Biol ; 49(6): 1038-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23855769

RESUMO

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide. The development of pulmonary hypertension (PH) in patients with COPD is strongly associated with increased mortality. Chronic inflammation and changes to the lung extracellular matrix (ECM) have been implicated in the pathogenesis of COPD, yet the mechanisms that lead to PH secondary to COPD remain unknown. Our experiments using human lung tissue show increased expression levels of the adenosine A2B receptor (ADORA2B) and a heightened deposition of hyaluronan (HA; a component of the ECM) in remodeled vessels of patients with PH associated with COPD. We also demonstrate that the expression of HA synthase 2 correlates with mean pulmonary arterial pressures in patients with COPD, with and without a secondary diagnosis of PH. Using an animal model of airspace enlargement and PH, we show that the blockade of ADORA2B is able to attenuate the development of a PH phenotype that correlates with reduced levels of HA deposition in the vessels and the down-regulation of genes involved in the synthesis of HA.


Assuntos
Ácido Hialurônico/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptor A2B de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Idoso , Animais , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia , Purinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor A2B de Adenosina/genética
14.
World J Gastroenterol ; 29(28): 4433-4450, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37576703

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major health burden with an increasing global incidence. Unfortunately, the unavailability of knowledge underlying NAFLD pathogenesis inhibits effective preventive and therapeutic measures. AIM: To explore the molecular mechanism of NAFLD. METHODS: Whole genome sequencing (WGS) analysis was performed on liver tissues from patients with NAFLD (n = 6) and patients with normal metabolic conditions (n = 6) to identify the target genes. A NAFLD C57BL6/J mouse model induced by 16 wk of high-fat diet feeding and a hepatocyte-specific F-box only protein 2 (FBXO2) overexpression mouse model were used for in vivo studies. Plasmid transfection, co-immunoprecipitation-based mass spectrometry assays, and ubiquitination in HepG2 cells and HEK293T cells were used for in vitro studies. RESULTS: A total of 30982 genes were detected in WGS analysis, with 649 up-regulated and 178 down-regulated. Expression of FBXO2, an E3 ligase, was upregulated in the liver tissues of patients with NAFLD. Hepatocyte-specific FBXO2 overexpression facilitated NAFLD-associated phenotypes in mice. Overexpression of FBXO2 aggravated odium oleate (OA)-induced lipid accumulation in HepG2 cells, resulting in an abnormal expression of genes related to lipid metabolism, such as fatty acid synthase, peroxisome proliferator-activated receptor alpha, and so on. In contrast, knocking down FBXO2 in HepG2 cells significantly alleviated the OA-induced lipid accumulation and aberrant expression of lipid metabolism genes. The hydroxyl CoA dehydrogenase alpha subunit (HADHA), a protein involved in oxidative stress, was a target of FBXO2-mediated ubiquitination. FBXO2 directly bound to HADHA and facilitated its proteasomal degradation in HepG2 and HEK293T cells. Supplementation with HADHA alleviated lipid accumulation caused by FBXO2 overexpression in HepG2 cells. CONCLUSION: FBXO2 exacerbates lipid accumulation by targeting HADHA and is a potential therapeutic target for NAFLD.


Assuntos
Proteínas F-Box , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Células HEK293 , Fígado , Metabolismo dos Lipídeos , Oxirredutases , Lipídeos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/farmacologia
15.
Am J Respir Crit Care Med ; 182(7): 918-28, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20558631

RESUMO

RATIONALE: Prolonged exposure to 100% O(2) causes hyperoxic acute lung injury (HALI), characterized by alveolar epithelial cell injury and death. We previously demonstrated that the murine chitinase-like protein, breast regression protein (BRP)-39 and its human homolog, YKL-40, inhibit cellular apoptosis. However, the regulation and roles of these molecules in hyperoxia have not been addressed. OBJECTIVES: We hypothesized that BRP-39 and YKL-40 (also called chitinase-3-like 1) play important roles in the pathogenesis of HALI. METHODS: We characterized the regulation of BRP-39 during HALI and the responses induced by hyperoxia in wild-type mice, BRP-39-null (-/-) mice, and BRP-39(-/-) mice in which YKL-40 was overexpressed in respiratory epithelium. We also compared the levels of tracheal aspirate YKL-40 in premature newborns with respiratory failure. MEASUREMENTS AND MAIN RESULTS: These studies demonstrate that hyperoxia inhibits BRP-39 in vivo in the murine lung and in vitro in epithelial cells. They also demonstrate that BRP-39(-/-) mice have exaggerated permeability, protein leak, oxidation, inflammatory, chemokine, and epithelial apoptosis responses, and experience premature death in 100% O(2). Lastly, they demonstrate that YKL-40 ameliorates HALI, prolongs survival in 100% O(2), and rescues the exaggerated injury response in BRP-39(-/-) animals. In accord with these findings, the levels of tracheal aspirate YKL-40 were lower in premature infants treated with hyperoxia for respiratory failure who subsequently experienced bronchopulmonary dysplasia or death compared with those that did not experience these complications. CONCLUSIONS: These studies demonstrate that hyperoxia inhibits BRP-39/YKL-40, and that BRP-39 and YKL-40 are critical regulators of oxidant injury, inflammation, and epithelial apoptosis in the murine and human lung.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Displasia Broncopulmonar/fisiopatologia , Glicoproteínas/metabolismo , Hiperóxia/fisiopatologia , Recém-Nascido Prematuro , Lectinas/metabolismo , Adipocinas , Animais , Apoptose , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3 , Feminino , Humanos , Recém-Nascido , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , Mucosa Respiratória/metabolismo , Análise de Sobrevida
16.
Front Mol Biosci ; 8: 636678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778007

RESUMO

Background: Acute respiratory distress syndrome (ARDS) is a clinical presentation of acute lung injury (ALI) with often fatal lung complication. Adenosine, a nucleoside generated following cellular stress provides protective effects in acute injury. The levels of extracellular adenosine can be depleted by equilibrative nucleoside transporters (ENTs). ENT inhibition by pharmaceutical agent dipyridamole promotes extracellular adenosine accumulation and is protective in ARDS. However, the therapeutic potential of dipyridamole in acute lung injury has not yet been evaluated. Methods: Adenosine acts on three adenosine receptors, the adenosine A1 (Adora1), A2a (Adora2a), the A2b (Adora2b) or the adenosine A3 (Adora 3) receptor. Accumulation of adenosine is usually required to stimulate the low-affinity Adora2b receptor. In order to investigate the effect of adenosine accumulation and the contribution of epithelial-specific ENT2 or adora2b expression in experimental ALI, dipyridamole, and epithelial specific ENT2 or Adora2b deficient mice were utilized. MLE12 cells were used to probe downstream Adora2b signaling. Adenosine receptors, transporters, and targets were determined in ARDS lungs. Results: ENT2 is mainly expressed in alveolar epithelial cells and is negatively regulated by hypoxia following tissue injury. Enhancing adenosine levels with ENT1/ENT2 inhibitor dipyridamole at a time when bleomycin-induced ALI was present, reduced further injury. Mice pretreated with the ADORA2B agonist BAY 60-6583 were protected from bleomycin-induced ALI by reducing vascular leakage (558.6 ± 50.4 vs. 379.9 ± 70.4, p < 0.05), total bronchoalveolar lavage fluid cell numbers (17.9 ± 1.8 to 13.4 ± 1.4 e4, p < 0.05), and neutrophil infiltration (6.42 ± 0.25 vs. 3.94 ± 0.29, p < 0.05). While mice lacking Adora2b in AECs were no longer protected by dipyridamole. We also identified occludin and focal adhesion kinase as downstream targets of ADORA2B, thus providing a novel mechanism for adenosine-mediated barrier protection. Similarly, we also observed similar enhanced ADORA2B (3.33 ± 0.67 to 16.12 ± 5.89, p < 0.05) and decreased occludin (81.2 ± 0.3 to 13.3 ± 0.4, p < 0.05) levels in human Acute respiratory distress syndrome lungs. Conclusion: We have highlighted a role of dipyridamole and adenosine signaling in preventing or treating ALI and identified Ent2 and Adora2b as key mediators in important for the resolution of ALI.

17.
J Exp Med ; 217(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31757866

RESUMO

Systemic sclerosis (SSc; scleroderma) is a multisystem fibrotic disease. The mammalian cleavage factor I 25-kD subunit (CFIm25; encoded by NUDT21) is a key regulator of alternative polyadenylation, and its depletion causes predominantly 3'UTR shortening through loss of stimulation of distal polyadenylation sites. A shortened 3'UTR will often lack microRNA target sites, resulting in increased mRNA translation due to evasion of microRNA-mediated repression. Herein, we report that CFlm25 is downregulated in SSc skin, primary dermal fibroblasts, and two murine models of dermal fibrosis. Knockdown of CFIm25 in normal skin fibroblasts is sufficient to promote the 3'UTR shortening of key TGFß-regulated fibrotic genes and enhance their protein expression. Moreover, several of these fibrotic transcripts show 3'UTR shortening in SSc skin. Finally, mice with CFIm25 deletion in fibroblasts show exaggerated skin fibrosis upon bleomycin treatment, and CFIm25 restoration attenuates bleomycin-induced skin fibrosis. Overall, our data link this novel RNA-processing mechanism to dermal fibrosis and SSc pathogenesis.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Regulação para Baixo/genética , Poliadenilação/genética , Escleroderma Sistêmico/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Bleomicina/farmacologia , Células Cultivadas , Fator de Especificidade de Clivagem e Poliadenilação/genética , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia , Pele/patologia , Transfecção
18.
J Clin Invest ; 129(5): 1984-1999, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30830875

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and deadly disease with a poor prognosis and few treatment options. Pathological remodeling of the extracellular matrix (ECM) by myofibroblasts is a key factor that drives disease pathogenesis, although the underlying mechanisms remain unknown. Alternative polyadenylation (APA) has recently been shown to play a major role in cellular responses to stress by driving the expression of fibrotic factors and ECMs through altering microRNA sensitivity, but a connection to IPF has not been established. Here, we demonstrate that CFIm25, a global regulator of APA, is down-regulated in the lungs of patients with IPF and mice with pulmonary fibrosis, with its expression selectively reduced in alpha-smooth muscle actin (α-SMA) positive fibroblasts. Following the knockdown of CFIm25 in normal human lung fibroblasts, we identified 808 genes with shortened 3'UTRs, including those involved in the transforming growth factor-ß signaling pathway, the Wnt signaling pathway, and cancer pathways. The expression of key pro-fibrotic factors can be suppressed by CFIm25 overexpression in IPF fibroblasts. Finally, we demonstrate that deletion of CFIm25 in fibroblasts or myofibroblast precursors using either the Col1a1 or the Foxd1 promoter enhances pulmonary fibrosis after bleomycin exposure in mice. Taken together, our results identified CFIm25 down-regulation as a novel mechanism to elevate pro-fibrotic gene expression in pulmonary fibrosis.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Poliadenilação , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/fisiopatologia , Regiões 3' não Traduzidas , Actinas/metabolismo , Adulto , Idoso , Animais , Bleomicina/farmacologia , Progressão da Doença , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
19.
Am J Respir Cell Mol Biol ; 39(6): 739-46, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18617680

RESUMO

IL-11 and IL-11 receptor (R)alpha are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Ralpha, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Ralpha-null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Ralpha. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13-overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung.


Assuntos
Inflamação/metabolismo , Interleucina-11/metabolismo , Interleucina-13/metabolismo , Muco/metabolismo , Transdução de Sinais , Células Th2/metabolismo , Alérgenos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Mucina-5AC/metabolismo , Ovalbumina/imunologia , Fenótipo , Receptores de Interleucina-11/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
20.
Arthritis Rheumatol ; 70(10): 1673-1684, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29771006

RESUMO

OBJECTIVE: Systemic sclerosis (SSc; scleroderma) is a chronic disease that affects the skin and various internal organs. Dermal fibrosis is a major component of this disease. The mechanisms that promote dermal fibrosis remain elusive. Elevations in tissue adenosine levels and the subsequent engagement of the profibrotic A2B adenosine receptor (ADORA2B) have been shown to regulate fibrosis in multiple organs including the lung, kidney, and penis; however, the role of ADORA2B in dermal fibrosis has not been investigated. We undertook this study to test our hypothesis that elevated expression of ADORA2B in the skin drives the development of dermal fibrosis. METHODS: We assessed the involvement of ADORA2B in the regulation of dermal fibrosis using a well-established mouse model of dermal fibrosis. Using an orally active ADORA2B antagonist, we demonstrated how inhibition of ADORA2B results in reduced dermal fibrosis in 2 distinct experimental models. Finally, using human dermal fibroblasts, we characterized the expression of adenosine receptors. RESULTS: We demonstrated that levels of ADORA2B were significantly elevated in dermal fibrosis and that the therapeutic blockade of this receptor in vivo using an ADORA2B antagonist could reduce the production of profibrotic mediators in the skin and attenuate dermal fibrosis. Antagonism of ADORA2B resulted in reduced numbers of arginase-expressing macrophages and myofibroblasts and in reduced levels of the extracellular matrix proteins fibronectin, collagen, and hyaluronan. CONCLUSION: These findings identify ADORA2B as a potential profibrotic regulator in dermal fibrosis and suggest that ADORA2B antagonism may be a useful approach for the treatment of SSc.


Assuntos
Fibrose/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/farmacologia , Escleroderma Sistêmico/tratamento farmacológico , Dermatopatias/tratamento farmacológico , Pele/patologia , Animais , Bleomicina , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibrose/induzido quimicamente , Fibrose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/patologia , Pele/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Dermatopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA