Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(13): e2217208120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940337

RESUMO

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.

2.
J Am Chem Soc ; 146(22): 15167-15175, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717376

RESUMO

As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction. Subsequently, a series of statistical approaches were employed to unveil the relationship between the geometric structure and overall activity. Based on the radial frequency distribution of metal elements and the distribution of ΔGH, we have identified the surface and subsurface sites occupied by Pt and Ru, respectively, as the most active sites. Particularly, the concept of equivalent site ratio predicts that the overall activity is highest when the Ru content is 20-30%. Furthermore, a series of Pt-Ru alloys were synthesized to validate the proposed theory. This provides crucial insights into understanding the origin of catalytic activity in alloys and thus will better guide the rational development of targeted multisite catalysts.

3.
Small ; : e2400099, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507728

RESUMO

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

4.
Small ; : e2400673, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700057

RESUMO

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

5.
Nano Lett ; 23(4): 1401-1408, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715492

RESUMO

Engineered MXene surfaces with more -O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expanding the adjustment method from the top-down perspective. Herein, for the first time, the formation dynamics of -O functional groups on Mo2CTx are discovered as a two-step dehydrogenation of adsorbed water through in situ near-ambient-pressure X-ray photoelectron spectroscopy, further confirmed by ab initio molecular dynamics simulations. From this, the controllable substitution of -F functional groups with -O functional groups is achieved on Mo2CTx during electrochemical cycling in an aqueous electrolyte. The obtained Mo2CTx with rich -O groups exhibits a high capacitance of 163.2 F g -1 at 50 mV s -1, together with excellent stability. These results offer new insights toward engineering surface functional groups of MXenes for many specific applications.

6.
J Am Chem Soc ; 145(19): 10681-10690, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129450

RESUMO

Lewis acidic molten salt method is a promising synthesis strategy for achieving MXenes with controllable surface termination from numerous MAX materials. Understanding the phase evolution chemistry during etching and post-processing is highly desirable but remains a key challenge due to the lack of suitable in-situ characterizations and the complexity of the reaction process. Herein, we introduce an operando synchrotron radiation X-ray diffraction (SRXRD) technique to unveil the phase evolution process of Nb2GaC MAX under a molten-salt ambient, proposing a controllable synthesis to achieve optimal etching through precise temperature and time adjustment. Subsequently, the phase structure of Nb2CTx MXenes is successfully tailored from hexagonal to amorphous by time-dependent persulfate oxidation. The resulting amorphous Nb2CTx with a well-patterned morphology and numerous chloride terminations exhibits highly improved specific capacity, rate capability, and long cycling for Li+ storage with a Cl-containing surface protective film. Addressing the time-related phase evolution during the entire molten salt strategy provides new insights into achieving higher efficiency and controllability in preparing MXenes and shows great potential in high-performance energy storage systems based on MXenes.

7.
Inorg Chem ; 62(51): 21257-21264, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069815

RESUMO

Phase engineering synthesis strategy is extremely challenging to achieve stable metallic phase molybdenum diselenide for a better physicochemical property than the thermodynamically stable semiconducting phase. Herein, we introduce tungsten atom clusters into the MoSe2 layered structure, realizing the phase transition from the 2H semiconductor to 1T metallic phase at a high temperature. The combination of synchrotron radiation X-ray absorption spectroscopy, Cs-corrected transmission electron microscopy, and theoretical calculation demonstrates that the aggregation doping of W atoms is the factor of MoSe2 structure transformation. When utilizing this distinct structure as an anode component, it demonstrates outstanding rate capability and durability. After 500 cycles, this results in a specific capacity of 1007.4 mAh g-1 at 500 mA g-1. These discoveries could open the door for the future development of high-performance anodes for ion battery applications.

8.
Nano Lett ; 22(8): 3340-3348, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35412833

RESUMO

Designing earth-abundant electrocatalysts toward highly efficient CO2 reduction has significant importance to decrease the global emission of greenhouse gas. Herein, we propose an efficient strategy to anchor non-noble metal single atoms on Zr6-cluster-porphyrin framework hollow nanocapsules with well-defined and abundant metal-N4 porphyrin sites for efficient electrochemical CO2 reduction. Among different transition metal single atoms (Mn, Fe, Co, Ni, and Cu), Co single-atom anchored Zr6-cluster-porphyrin framework hollow nanocapsules demonstrated the highest activity and selectivity for CO production. The rich Co-N4 active centers and hierarchical porous structure contribute to enhanced CO2 adsorption capability and moderate binding strength of reaction intermediates, thus facilitating *CO desorption and CO2-to-CO conversion. The Co-anchored nanocapsules maintain high efficiency and well-preserved stability during long-term electrocatalysis tests. Moreover, the Co-anchored nanocapsules exhibit a remarkable solar-to-CO energy conversion efficiency of 12.5% in an integrated solar-driven CO2 reduction/O2 evolution electrolysis system when powered by a custom large-area [Cs0.05(FA0.85MA0.15)0.95]Pb0.9(I0.85Br0.15)3-based perovskite solar cell.

9.
Nano Lett ; 22(9): 3832-3839, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451305

RESUMO

Enhancing activity and stability of iridium- (Ir-) based oxygen evolution reaction (OER) catalysts is of great significance in practice. Here, we report a vacancy-rich nickel hydroxide stabilized Ir single-atom catalyst (Ir1-Ni(OH)2), which achieves long-term OER stability over 260 h and much higher mass activity than commercial IrO2 in alkaline media. In situ X-ray absorption spectroscopy analysis certifies the obvious structure reconstruction of catalyst in OER. As a result, an active structure in which high-valence and peripheral oxygen ligands-rich Ir sites are confined onto the nickel oxyhydroxide surface is formed. In addition, the precise introduction of atomized Ir not only surmounts the large-range dissolution and agglomeration of Ir but also suppresses the dissolution of substrate in OER. Theoretical calculations further account for the activation of Ir single atoms and the promotion of oxygen generation by high-valence Ir, and they reveal that the deprotonation process of adsorbed OH is rate-determining.

10.
Small ; 18(19): e2200073, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257478

RESUMO

Atomically dispersed metal catalysts often exhibit high catalytic performances, but the metal loading density must be kept low to avoid the formation of metal nanoparticles, making it difficult to improve the overall activity. Diverse strategies based on creating more anchoring sites (ASs) have been adopted to elevate the loading density. One problem of such traditional methods is that the single atoms always gather together before the saturation of all ASs. Here, a chemical scissors strategy is developed by selectively removing unwanted metallic materials after excessive loading. Different from traditional ways, the chemical scissors strategy places more emphasis on the accurate matching between the strength of etching agent and the bond energies of metal-metal/metal-substrate, thus enabling a higher loading up to 2.02 wt% even on bare substrate without any pre-treatment (the bare substrate without any pre-treatment generally only has a few ASs for single atom loading). It can be inferred that by combining with other traditional methods which can create more ASs, the loading could be further increased by saturating ASs. When used for CH3 OH generation via photocatalytic CO2 reduction, the as-made single-atom catalyst exhibits impressive catalytic activity of 597.8 ± 144.6 µmol h-1 g-1 and selectivity of 81.3 ± 3.8%.


Assuntos
Nanopartículas Metálicas , Metais , Catálise , Metais/química , Fenômenos Físicos
11.
J Synchrotron Radiat ; 29(Pt 4): 1065-1073, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787574

RESUMO

The differential XAFS technique holds promise for detecting surface changes, which benefits many chemical applications. Phase-sensitive detection (PSD) analysis based on modulated excitation spectroscopy experiments is expected to obtain a high-quality difference spectrum, while the mathematical relationship and experiment parameters remain to be discussed. In this article, an approach to obtaining the difference spectrum from the PSD demodulated spectrum is described and its applicability in different experiment settings is discussed. The results indicate that the demodulated spectrum is almost equal to the difference spectrum when the modulating period is 20 times larger than the relaxation time constant. This approach was subsequently applied to an electrochemical modulation experiment and the demodulated spectrum was analyzed. A reversible lattice shrinking is observed via the fitting of demodulated spectra, which is proportional to the charge amount on the electrode. This approach could be used to quantitatively analyze the modulated excitation XAS data and holds promise for a wide range of electrochemical studies.

12.
J Am Chem Soc ; 143(26): 9858-9865, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156844

RESUMO

Constructing single-crystal inorganic helical structures is a fascinating subject for a large variety of research fields. However, the driving force of self-coiling, particularly in helical architectures, still remains a major challenge. Here, using MoO3-x sub-nanometric wires (SNWs) as an example, we identified that spontaneous helical architecture with different dimensional features is closely related with their surface asymmetrical defects. Specifically, the surface defects of SNWs are critical to produce the self-coiling process, thereby achieving the ordered helical conformations. Theoretical calculations further suggest that the formation of in-plane and out-of-plane coiling structures is determined by the asymmetrical distribution of the surface defects, and the inhomogeneous charge separation with strong Coulomb attraction dominates the different structural configurations. The resulting MoO3-x SNW exhibits excellent photothermal behaviors in both aqueous solutions and hydrogel matrixes. Our study provides a novel protocol to achieve helical structure design for their future applications.

13.
J Am Chem Soc ; 143(13): 5201-5211, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764061

RESUMO

Noble metals manifest themselves with unique electronic structures and irreplaceable activity toward a wide range of catalytic applications but are unfortunately restricted by limited choice of geometric structures spanning single atoms, clusters, nanoparticles, and bulk crystals. Herein, we propose how to overcome this limitation by integrating noble metal atoms into the lattice of transition metal oxides to create a new type of hybrid structure. This study shows that iridium single atoms can be accommodated into the cationic sites of cobalt spinel oxide with short-range order and an identical spatial correlation as the host lattice. The resultant Ir0.06Co2.94O4 catalyst exhibits much higher electrocatalytic activity than the parent oxide by 2 orders of magnitude toward the challenging oxygen evolution reaction under acidic conditions. Because of the strong interaction between iridium and cobalt oxide support, the Ir0.06Co2.94O4 catalyst shows significantly improved corrosion resistance under acidic conditions and oxidative potentials. This work eliminates the "close-packing" limitation of noble metals and offers promising opportunity to create analogues with desired topologies for various catalytic applications.

14.
J Am Chem Soc ; 143(29): 11262-11270, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34281338

RESUMO

Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core-shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH0.43 by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mgPt-1 for methanol oxidation and 14.86 A mgPt-1 for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.

15.
J Am Chem Soc ; 143(1): 269-278, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373209

RESUMO

Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 µmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.

16.
Nanotechnology ; 31(34): 345704, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32375140

RESUMO

Two-dimensional transition metal dichalcogenide (2D TMDs) alloys, consisting of three or more elements, offer a luxury variety of chemical and physical properties through elemental ratio alteration, thus may provide ideal candidate with tunable band gap for specific electrical applications. In this work, we demonstrate a high-quality layered MoSe2xTe2-2x (x = 0 ∼ 1) alloy synthesized via one-step chemical vapor transport method for high-performance electronic and optoelectronic transistors. Our characterizations reveal the obtained ternary alloy forming high-quality single crystal layers with 2H phase. Interestingly, the electronic transistors fabricated on MoSe2xTe2-2x thin layers (6 ∼ 7 layers) display an anomalous transition from ambipolar to n-type in conductive characteristics with the increase of substitution x value. The subsequent photoelectrical measurements exhibit that high on-off ratio for every ratio (x = 0.18, 0.38, 0.67, 0.83) with optical band gap in the range of 1.6 eV and 1.1 eV (near infrared). The optimized MoSe0.37Te1.63-based transistor can achieve up to ∼107 I on/I off and 105 I ph/I dark ratio, 100 mA W-1 photo-responsivity and 2.38% external quantum efficiency with high photoresponsivity. Thus, such ternary MoSe2xTe2-2x alloys may pose a great potential for 2D-based electronic and photoelectronic applications.

17.
J Am Chem Soc ; 141(19): 7807-7814, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31038309

RESUMO

Nitrogen fixation in a simulated natural environment (i.e., near ambient pressure, room temperature, pure water, and incident light) would provide a desirable approach to future nitrogen conversion. As the N≡N triple bond has a thermodynamically high cleavage energy, nitrogen reduction under such mild conditions typically undergoes associative alternating or distal pathways rather than following a dissociative mechanism. Here, we report that surface plasmon can supply sufficient energy to activate N2 through a dissociative mechanism in the presence of water and incident light, as evidenced by in situ synchrotron radiation-based infrared spectroscopy and near ambient pressure X-ray photoelectron spectroscopy. Theoretical simulation indicates that the electric field enhanced by surface plasmon, together with plasmonic hot electrons and interfacial hybridization, may play a critical role in N≡N dissociation. Specifically, AuRu core-antenna nanostructures with broadened light adsorption cross section and active sites achieve an ammonia production rate of 101.4 µmol g-1 h-1 without any sacrificial agent at room temperature and 2 atm pressure. This work highlights the significance of surface plasmon to activation of inert molecules, serving as a promising platform for developing novel catalytic systems.

18.
Chemistry ; 25(41): 9670-9677, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31069880

RESUMO

As photocatalysis technology could transform renewable and clean solar energy into green hydrogen (H2 ) energy through solar water splitting, it is regarded as the "Holy Grail" in chemistry field in the 21st century. Unfortunately, the bottleneck of this technique still lies in the exploration of highly active, cost-effective, and robust photocatalysts. This work reports the design and synthesis of a novel zeolitic imidazole framework (ZIF) coupled Zn0.8 Cd0.2 S hetero-structured photocatalyst for high-performance visible-light-induced H2 production. State-of-the-art characterizations and theoretical computations disclose that the interfacial electronic interaction between ZIF and Zn0.8 Cd0.2 S, the high distribution of Zn0.8 Cd0.2 S on ZIF, and the atomically dispersed coordinately unsaturated Co sites in ZIF synergistically arouse the significantly improved visible-light photocatalytic H2 production performance.

19.
Angew Chem Int Ed Engl ; 58(35): 12252-12257, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31245890

RESUMO

Common-metal-based single-atom catalysts (SACs) are quite difficult to design due to the complex synthesis processes required. Herein, we report a single-atom nickel iodide (SANi-I) electrocatalyst with atomically dispersed non-metal iodine atoms. The SANi-I is prepared via a simple calcination step in a vacuum-sealed ampoule and subsequent cyclic voltammetry activation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and synchrotron-based X-ray absorption spectroscopy are applied to confirm the atomic-level dispersion of iodine atoms and detailed structure of SANi-I. Single iodine atoms are found to be isolated by oxygen atoms. The SANi-I is structural stable and shows exceptional electrocatalytic activity for the hydrogen evolution reaction (HER). In situ Raman spectroscopy reveals that the hydrogen adatom (Hads ) is adsorbed by a single iodine atom, forming the I-Hads intermediate, which promotes the HER process.

20.
J Am Chem Soc ; 140(30): 9434-9443, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975522

RESUMO

Photocatalysis may provide an intriguing approach to nitrogen fixation, which relies on the transfer of photoexcited electrons to the ultrastable N≡N bond. Upon N2 chemisorption at active sites (e.g., surface defects), the N2 molecules have yet to receive energetic electrons toward efficient activation and dissociation, often forming a bottleneck. Herein, we report that the bottleneck can be well tackled by refining the defect states in photocatalysts via doping. As a proof of concept, W18O49 ultrathin nanowires are employed as a model material for subtle Mo doping, in which the coordinatively unsaturated (CUS) metal atoms with oxygen defects serve as the sites for N2 chemisorption and electron transfer. The doped low-valence Mo species play multiple roles in facilitating N2 activation and dissociation by refining the defect states of W18O49: (1) polarizing the chemisorbed N2 molecules and facilitating the electron transfer from CUS sites to N2 adsorbates, which enables the N≡N bond to be more feasible for dissociation through proton coupling; (2) elevating defect-band center toward the Fermi level, which preserves the energy of photoexcited electrons for N2 reduction. As a result, the 1 mol % Mo-doped W18O49 sample achieves an ammonia production rate of 195.5 µmol gcat-1 h-1, 7-fold higher than that of pristine W18O49. In pure water, the catalyst demonstrates an apparent quantum efficiency of 0.33% at 400 nm and a solar-to-ammonia efficiency of 0.028% under simulated AM 1.5 G light irradiation. This work provides fresh insights into the design of photocatalyst lattice for N2 fixation and reaffirms the versatility of subtle electronic structure modulation in tuning catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA