Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 152, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297200

RESUMO

BACKGROUND: Pneumocystis jirovecii pneumonia (PJP) is a life-threatening and severe disease in immunocompromised hosts. A synergistic regimen based on the combination of sulfamethoxazole-trimethoprim (SMX-TMP) with caspofungin and glucocorticosteroids (GCSs) may be a potential first-line therapy for PJP. Therefore, it is important to explore the efficacy and safety of this synergistic therapy for treating non-HIV-related PJP patients. METHODS: We retrospectively analysed the data of 38 patients with non-HIV-related PJP at the First Affiliated Hospital of Xi'an Jiaotong University. Patients were divided into two groups: the synergistic therapy group (ST group, n = 20) and the monotherapy group (MT group, n = 18). All patients were from the ICU and were diagnosed with severe PJP. In the ST group, all patients were treated with SMX-TMP (TMP 15-20 mg/kg per day) combined with caspofungin (70 mg as the loading dose and 50 mg/day as the maintenance dose) and a GCS (methylprednisolone 40-80 mg/day). Patients in the MT group were treated only with SMX-TMP (TMP 15-20 mg/kg per day). The clinical response, adverse events and mortality were compared between the two groups. RESULTS: The percentage of patients with a positive clinical response in the ST group was significantly greater than that in the MT group (100.00% vs. 66.70%, P = 0.005). The incidence of adverse events in the MT group was greater than that in the ST group (50.00% vs. 15.00%, P = 0.022). Furthermore, the dose of TMP and duration of fever in the ST group were markedly lower than those in the MT group (15.71 mg/kg/day vs. 18.35 mg/kg/day (P = 0.001) and 7.00 days vs. 11.50 days (P = 0.029), respectively). However, there were no significant differences in all-cause mortality or duration of hospital stay between the MT group and the ST group. CONCLUSIONS: Compared with SMZ/TMP monotherapy, synergistic therapy (SMZ-TMP combined with caspofungin and a GCS) for the treatment of non-HIV-related PJP can increase the clinical response rate, decrease the incidence of adverse events and shorten the duration of fever. These results indicate that synergistic therapy is effective and safe for treating severe non-HIV-related PJP.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Humanos , Pneumonia por Pneumocystis/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos , Caspofungina/uso terapêutico , Estudos Retrospectivos , Centros de Atenção Terciária , Corticosteroides/uso terapêutico
2.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675692

RESUMO

The global production landscape exhibits a substantial need for efficient and clean energy. Enhancing and advancing energy storage systems are a crucial avenue to optimize energy utilization and mitigate costs. Lithium batteries are the most effective and impressive energy utilization system at present, with good safety, high energy density, excellent cycle performance, and other advantages, occupying most of the market. However, due to the defects in the electrode material of the battery itself, the electrode will undergo the process of expansion, stress evolution, and electrode damage during electro-chemical cycling, which will degrade battery performance. Therefore, the detection of property changes in the electrode during electro-chemical cycling, such as the evolution of stress and the modulus change, are useful for preventing the degradation of lithium-ion batteries. This review presents a current overview of measurement systems applied to the performance detection of batteries' electrodes, including the multi-beam optical stress sensor (MOSS) measurement system, the digital image correlation (DIC) measurement system, and the bending curvature measurement system (BCMS), which aims to highlight the measurement principles and advantages of the different systems, summarizes a part of the research methods by using each system, and discusses an effective way to improve the battery performance.

3.
Exp Lung Res ; 48(7-8): 199-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35943053

RESUMO

Objective: Bromodomain-containing protein 7 (BRD7) is a key component of the switch/sucrose non-fermentable complex that participates in chromatin remodeling and transcriptional regulation. Although the emerging role of BRD7 in the pathophysiology of various diseases has been observed, its role in asthma remains unknown. Here, we assessed the function of BRD7 as a mediator of airway remodeling in asthma using an in vitro model. Methods: Airway smooth muscle cells (ASMCs) were challenged with tumor necrosis factor-α (TNF-α) to establish an in vitro airway remodeling model. Protein levels were examined using western blotting. Cell proliferation was measured using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell migration was assessed using a transwell migration assay. Results: Exposure to TNF-α dramatically decreased BRD7 levels in ASMCs. BRD7 remarkably decreased TNF-α-induced proliferation and migration of ASMCs. In contrast, ASMCs with BRD7 deficiency were more sensitive to TNF-α-induced pro-proliferative and pro-migratory effects. Mechanistically, BRD7 could repress the expression of Notch1 and block the Notch pathway in TNF-α-challenged cells. Notably, reactivation of Notch signaling substantially reversed the BRD7 overexpression-mediated effects, whereas restraining Notch signaling abolished BRD7-depletion-mediated effects on TNF-α-challenged cells. Conclusions: BRD7 inhibits the proliferation and migration of ASMCs elicited by TNF-α by downregulating the Notch pathway. This study indicates that BRD7 may exert a suppressive effect on airway remodeling during asthma.


Assuntos
Remodelação das Vias Aéreas , Asma , Proteínas Cromossômicas não Histona , Miócitos de Músculo Liso , Asma/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Receptores Notch/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Oral Dis ; 28(8): 2119-2130, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33749974

RESUMO

OBJECTIVES: The aim of our study was to determine the impact of Th17/Treg imbalance on the progression and malignant transformation of oral submucosal fibrosis (OSF). MATERIALS AND METHODS: To assess Th17 and Treg expression, overall 52 peripheral blood samples from OSF, oral squamous cell carcinoma (OSCC) patients, and healthy donors were analyzed by flow cytometry. Thirty normal oral mucosa, 72 OSF, and 90 OSCC samples were analyzed by immunohistochemistry. RESULTS: In peripheral blood samples, in OSCC with OSF, Th17 and Treg expression were significantly higher than those in OSF and OSCC without OSF as confirmed by immunohistochemistry. During OSF progression, Th17 and Th17/Treg ratio showed an increasing trend, while Treg expression showed a decreasing trend. Treg expression was significantly higher in OSCC with OSF than in OSF and OSCC without OSF, whereas the Th17/Treg ratio was significantly lower in OSCC with OSF. Treg expression was significantly correlated with smoking and clinical stage. Th17/Treg ratio was significantly associated with tumor size, lymph node metastasis, and clinical stage. A low Th17/Treg ratio was significantly associated with poor prognosis. CONCLUSIONS: Th17/Treg ratio is a potential diagnostic indicator for OSF occurrence and malignant transformation and was an independent prognostic factor for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fibrose Oral Submucosa , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Bucais/patologia , Fibrose Oral Submucosa/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linfócitos T Reguladores/patologia
5.
Cancer Cell Int ; 21(1): 215, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858426

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are involved in the oncogenesis, development and transformation of lung squamous cell carcinoma (LUSC). miR-665 is clinically significant and acts as a pivotal function in some cancers. Nevertheless, the effects and the potential mechanisms of miR-665 in human LUSC are still unknown. METHODS: To analyse the clinical significant of miR-665 in human LUSC, quantitative real-time PCR (qRT-PCR) was use to measure miR-665 expression in LUSC specimen tissues and cell lines. Tripartite motif 8 (TRIM8) was verified a target of miR-665 by performing bioinformatic prediction and luciferase reporter assay. The expression levels of TRIM8 were examined through qRT-PCR and Western blotting in LUSC specimen tissues. CCK8 assay was fulfilled for analyzing the function in LUSC cell proliferation. Flow cytometry was used to detect cell and apoptosis. TRIM8 silencing and overexpression further verified the biological effects as those caused by miR-665. RESULTS: Here we reported that miR-665 expression was upregulated in LUSC specimen tissues and cell lines. High miR-665 levels were related to differentiation, tumor size and TNM stage. miR-665 mimics facilitated LUSC cell growth and cell cycle G1-S transition and repressed apoptosis. miR-665 inhibitor suppressed cell proliferation and G1-S transition and promoted apoptosis. miR-665 expression was negatively correlated with TRIM8 mRNA expression in LUSC. Luciferase reporter assay confirmed that TRIM8 was a direct target gene of miR-665. miR-665 mimics downregulated the TRIM8 levels, and miR-665 inhibitor upregulated the TRIM8 levels in LUSC cells. Particularly, silencing TRIM8 led to the similar effects of miR-665 mimics in LUSC cells. Overexpression of TRIM8 inhibited LUSC cell proliferation in vitro and in vivo. Furthermore, miR-665 promoted LUSC cell proliferation through facilitating the Wnt5a/ß-catenin signaling pathway and restrained apoptosis via inhibiting Caspase-3 signaling pathway, whereas TRIM8 suppressed cell growth by repressing the Wnt5a/ß-catenin signaling pathway and induced apoptosis through activating Caspase-3 signaling pathway. CONCLUSIONS: The current study demonstrates that miR-665 facilitates LUSC cell proliferation and cell cycle transition by regulation of the Wnt5a/ß-Catenin signaling pathway and represses cell apoptosis via modulation of Caspase-3 signaling pathway by directly targeting TRIM8. These findings suggest that miR-665 might be a potential new target for LUSC therapy.

6.
BMC Endocr Disord ; 21(1): 98, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971870

RESUMO

BACKGROUND: Manifestations of hypokalaemia in ectopic adrenocorticotropic hormonesyndrome(EAS) vary from mild muscle weakness to life-threatening arrhythmia. Herein, we present a rare case of EAS with concomitant rhabdomyolysis(RM) as a result of intractable hypokalaemia. CASE PRESENTATION: A 64-year-old man was admitted for limb weakness and facial hyperpigmentation for 2 weeks. Lab tests revealed intractable hypokalaemia (lowest at 1.8 mmol/L) and metabolic alkalosis. The diagnosis of RM was based on a creatine kinase(CK)level of 5 times the upper limit. The elevated CK and myohemoglobin (Mb) levels returned to within the normal range after the alleviation of hypokalaemia. The patient was diagnosed with ACTH-dependent Cushing's syndrome (CS) based on unsuppressed serum cortisol after a low-dose dexamethasone suppression test(LDDST) and remarkably elevated ACTH levels. The diagnosis of EAS was made based on the results of a high-dose dexamethasone suppression test(HDDST) and bilateral inferior petrosal sinus sampling(BIPSS). Multiple lymph nodes in the left supraclavicular fossa, right root of neck, mediastinum and bilateral hili of the lung were found with abnormal uptake of 68Ga-DOTA-NOC. Mediastinoscopic lymph node biopsy was performed. The pathological diagnosis was small-cell and large-cell neuroendocrine carcinoma with positive ACTH staining. The patient was prescribed mifepristone and received one cycle of chemotherapy. The patient could not tolerate subsequent chemotherapy and died of dyscrasia. CONCLUSIONS: RM is a rare complication of EAS with insidious onset and atypical clinical manifestations. Serum potassium levels should be vigilantly monitored to avoid RM in EAS.


Assuntos
Síndrome de ACTH Ectópico/complicações , Carcinoma Neuroendócrino/complicações , Hipopotassemia/complicações , Rabdomiólise/etiologia , Síndrome de ACTH Ectópico/diagnóstico por imagem , Carcinoma Neuroendócrino/terapia , Evolução Fatal , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia Torácica
7.
BMC Musculoskelet Disord ; 21(1): 437, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631336

RESUMO

BACKGROUND: This study compares the use of radiographic K-Rod dynamic stabilization to the rigid system for the treatment of multisegmental degenerative lumbar spinal stenosis (MDLSS). METHODS: A total of 40 patients with MDLSS who underwent surgical treatment using the K-Rod (n = 25) and rigid systems (n = 15) from March 2013 to March 2017 were assessed. The mean follow-up period was 29.1 months. JOA, ODI, VAS and modified Macnab were assessed. Radiographic evaluations included lumbar lordosis angle, ISR value, operative and proximal adjacent ROM. Changes in intervertebral disc signal were classified according to Pfirrmann grade and UCLA system. RESULTS: JOA, ODI and VAS changed significantly after the operation to comparable levels between the groups. However, the lumbar lordosis significantly decreased at final follow-up between both groups. The ROM of the proximal adjacent segment increased at final follow-up, but the number of fixed segment ROMs in the K-Rod group were significantly lower at the final follow-up than observed prior to the operation. In both groups, the ISR of the proximal adjacent segment decreased, most notably in the rigid group. The ISR of the non-fusion fixed segments in the K-Rod group increased post-operation and during final follow-up. The levels of adjacent segment degeneration were higher in the rigid group vs. the K-Rod group according to modified Pfirrmann grading and the UCLA system. CONCLUSIONS: Compared with the rigid system for treatment of MDLSS, dynamic K-Rod stabilization achieves improved radiographic outcomes and improves the mobility of the stabilized segments, minimizing the influence on the proximal adjacent segment.


Assuntos
Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Estenose Espinal/cirurgia , Adulto , Idoso , Feminino , Humanos , Degeneração do Disco Intervertebral/cirurgia , Lordose/etiologia , Masculino , Pessoa de Meia-Idade , Radiografia , Amplitude de Movimento Articular , Estudos Retrospectivos , Espondilolistese/cirurgia , Resultado do Tratamento
8.
J Cell Biochem ; 120(4): 6642-6650, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552692

RESUMO

Abnormal proliferation and migration of airway smooth muscle cells (ASMCs) have been found to be important for the airway remodeling during the pathogenesis of asthma. Salidroside a bioactive glucoside that exerts antitumor activity via inhibiting the cell proliferation and migration of cancer cells. The aim of the current study was to evaluate the effects of salidroside on the proliferation and migration of ASMCs. Our results showed that salidroside inhibited the proliferation and migration of ASMCs in response to platelet-derived growth factor (PDGF) stimulation. Salidroside markedly attenuated the PDGF-induced production of matrix metalloproteinase 2 (MMP-2) and MMP-9 in ASMCs. The levels of contractile phenotype markers including smooth muscle α-actin and calponin were reduced in response to PDGF stimulation, which was attenuated by salidroside pretreatment. Salidroside diminished the increase in the expression levels of type I collagen and fibronectin in PDGF-stimulated ASMCs. Furthermore, salidroside blocked the PDGF-induced activation of the nuclear factor-κB (NF-κB) pathway in ASMCs. The results suggested that salidroside functionally regulated the proliferation, migration, phenotype plasticity, and extracellular matrix deposition in PDGF-induced ASMCs and the NF-κB pathway might be implicated in the effects of salidroside on ASMCs induced by PDGF.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fenóis/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley
9.
BMC Genomics ; 17(1): 865, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809759

RESUMO

BACKGROUND: Gram-negative bacteria of the genus Serratia are potential producers of many useful secondary metabolites, such as prodigiosin and serrawettins, which have potential applications in environmental bioremediation or in the pharmaceutical industry. Several Serratia strains produce prodigiosin and serrawettin W1 as the main bioactive compounds, and the biosynthetic pathways are co-regulated by quorum sensing (QS). In contrast, the Serratia strain, which can simultaneously produce prodigiosin and serrawettin W2, has not been reported. This study focused on analyzing the genomic sequence of Serratia sp. strain YD25T isolated from rhizosphere soil under continuously planted burley tobacco collected from Yongding, Fujian province, China, which is unique in producing both prodigiosin and serrawettin W2. RESULTS: A hybrid polyketide synthases (PKS)-non-ribosomal peptide synthetases (NRPS) gene cluster putatively involved in biosynthesis of antimicrobial serrawettin W2 was identified in the genome of YD25T, and its biosynthesis pathway was proposed. We found potent antimicrobial activity of serrawettin W2 purified from YD25T against various pathogenic bacteria and fungi as well as antitumor activity against Hela cells. Subsequently, comparative genomic analyses were performed among a total of 133 Serratia species. The prodigiosin biosynthesis gene cluster in YD25T belongs to the type I pig cluster, which is the main form of pig-encoding genes existing in most of the pigmented Serratia species. In addition, a complete autoinducer-2 (AI-2) system (including luxS, lsrBACDEF, lsrGK, and lsrR) as a conserved bacterial operator is found in the genome of Serratia sp. strain YD25T. Phylogenetic analysis based on concatenated Lsr and LuxS proteins revealed that YD25T formed an independent branch and was clearly distant from the strains that solely produce either prodigiosin or serrawettin W2. The Fe (III) ion reduction assay confirmed that strain YD25T could produce an AI-2 signal molecule. Phylogenetic analysis using the genomic sequence of YD25T combined with phylogenetic and phenotypic analyses support this strain as a member of a novel and previously uncharacterized Serratia species. CONCLUSION: Genomic sequence and metabolite analysis of Serratia surfactantfaciens YD25T indicate that this strain can be further explored for the production of useful metabolites. Unveiling the genomic sequence of S. surfactantfaciens YD25T benefits the usage of this unique strain as a model system for studying the biosynthesis regulation of both prodigiosin and serrawettin W2 by the QS system.


Assuntos
Genoma Bacteriano , Genômica , Lipoproteínas/biossíntese , Metaboloma , Metabolômica , Peptídeos Cíclicos/biossíntese , Prodigiosina/biossíntese , Serratia/genética , Serratia/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Biologia Computacional/métodos , Mineração de Dados , Ácidos Graxos/metabolismo , Genômica/métodos , Lipoproteínas/genética , Lipoproteínas/farmacologia , Metabolômica/métodos , Família Multigênica , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Fenótipo , Filogenia , Prodigiosina/farmacologia , Percepção de Quorum/genética , Serratia/classificação
10.
Tumour Biol ; 37(2): 2299-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26361956

RESUMO

Biochemical markers play a significant role in the diagnosis of lung cancer. Recent studies have demonstrated a link involving S100 Calcium Binding Proteins (S100A2, S100A6) and non-small cell lung cancer (NSCLC), but the expediency of their serum levels in NSCLC has not been established. In this study, we evaluate the potential of serum S100A2 and S100A6 levels as diagnostic markers for NSCLC. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of S100A2 and S100A6 in 141 NSCLC patients and 150 healthy subjects. Serum levels of the two proteins in patients with NSCLC were higher compared to healthy controls (P = 0.0002 for S100A2 and P < 0.0001 for S100A6). Moreover, the levels of S100A2 and S100A6 were higher in the sera of stage I/II NSCLC patients compared to healthy controls with P = 0.01 and <0.0001, respectively. Receiver operating characteristic (ROC) analysis showed that S100A2 could distinguish NSCLC patients from healthy controls (AUC = 0.646), and S100A6 could also identify NSCLC (AUC = 0.668). Meanwhile, these two proteins showed notable capabilities for distinguishing stage I/II NSCLC from healthy controls (AUC = 0.708 for S100A2 and AUC = 0.702 for S100A6). Our results indicate that serum levels of S100A2 and S100A6 are significantly elevated in early stage NSCLC and may have the potential for NSCLC biomarker. Further studies with large sample population would help validate our findings.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Proteínas de Ciclo Celular/sangue , Fatores Quimiotáticos/sangue , Neoplasias Pulmonares/diagnóstico , Proteínas S100/sangue , Adulto , Idoso , Área Sob a Curva , Carcinoma Pulmonar de Células não Pequenas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Curva ROC , Proteína A6 Ligante de Cálcio S100 , Sensibilidade e Especificidade
11.
Cell Physiol Biochem ; 36(3): 893-906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26065336

RESUMO

BACKGROUND: Drug combination therapies using cisplatin and natural products are common practice in the treatment of human lung cancer. Osthole is a natural compound extracted from a number of medicinal plants and has been shown to exert strong anticancer activities with low toxicity. METHODS: In the present study, NBM-T-BMX-OS01 (BMX), derived from the semi-synthesis of osthole, was evaluated in cisplatin treated A549 cells to investigate its effect on cisplatin resistance in human lung cancer. The anticancer effect of BMX were measured by cell viablity' colony formation' TUNEL staining' flow cytometry and cell cycle assay. The fluorescence staining was performed to detect intracellular and mitochondrial reactive oxygen species (ROS) generation. Western blot analysis, antagonists pretreatment and small interfering RNA (siRNA) transfection were used to determine the potential mechanism. RESULTS: It was found that, in comparison with single cisplatin treatment, the combination of BMX and cisplatin resulted in greater efficacy in inhibition of proliferation and colony formation, apoptosis induction and cell cycle arrest. The results of fluorescence staining showed that the combination effect of BMX and cisplatin was due to oxidative stress induced by mitochondrial ROS generation. In addition, BMX significantly attenuated the phosphorylation of ERK and Akt, two important pro-survival kinases. In contrast, BMX inhibited the activation of AMPK, and knockdown of AMPK using specific siRNA partially reversed BMX-induced inhibition of ERK and Akt, as well as its synthetic effects on cisplatin induced anticancer activity in A549 cells. CONCLUSION: Taken together, this study provides that BMX might modulate cisplatin resistance through AMPK-ERK and AMPK-Akt pathways. These results also support the role of BMX as a potential drug candidate for use in combination with cisplatin in the treatment of human lung cancer.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Cumarínicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
12.
Biochem Biophys Res Commun ; 464(3): 748-54, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26166818

RESUMO

MicroRNAs have been shown to act as crucial modulators during carcinogenesis. Recent studies have implied that miR-134 expression associated with epithelial-to-mesenchymal transition phenotype and invasive potential of NSCLC cells. Our study investigated the pathogenic implications of miR-134 in small cell lung cancer (SCLC). Overexpression or inhibition MiR-134 expression by miR-134 mimics or miR-134 inhibitors (anti-miR-134) in SCLC cell lines was detected using qRT-PCR. Lactate dehydrogenase (LDH) assay, MTT assays and flow cytometry were performed in order to clarify the growth and apoptosis of SCLC cells which had been transfected with miR-134 mimics or anti-miR-134. WWOX expression in H69 cells was detected by qRT-PCR and western blot, respectively. The results showed that overexpression miR-134 was significantly promoting SCLC cells growth and inhibit its apoptosis. In addition, reduced miR-134 expression was significantly correlated with cell growth inhibition and apoptosis promotion. Furthermore, transfection of miR-134 mimics into the SCLC cells markedly down-regulated the level of WWOX, whereas, anti-miR-134 up-regulated WWOX expression. We also found that overexpression WWOX attenuate miR-134 induced H69 cells growth, and promote cell apoptosis. Moreover, miR-134 promoted cell proliferation and inhibit apoptosis via the activation of ERK1/2 pathway. These findings suggest that miR-134 may be an ideal diagnostic and prognostic marker, and may be attributed to the molecular therapy of SCLC.


Assuntos
Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Apoptose/genética , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética , Humanos , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/antagonistas & inibidores , Mimetismo Molecular , Prognóstico , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Regulação para Cima , Oxidorredutase com Domínios WW
13.
Tumour Biol ; 36(6): 4357-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25874488

RESUMO

MicroRNAs (miRNAs) play a critical role in cancer development and progression. Aberrant expression of miR-15a has recently been reported in several cancers, but its role in non-small cell lung cancer (NSCLC) still remains obscure. We investigated the effects of miR-15a on proliferation, apoptosis, and metastasis in A549 cells. Eighteen paired NSCLC and adjacent non-tumor lung tissues were surgically removed and immediately snap frozen until total RNA was extracted and confirmed by two independent pathologists. The targets of miR-15a were predicted by bioinformatics tools. RNA isolation and quantitative real-time PCR (qRT-PCR), Western blot analysis, cell proliferation assay, cell cycle analysis, cell apoptosis assay, and migration and invasion assays were done. The wild type (WT) or mutant type (MT) 3'-untranslated region (UTR) vectors were co-transfected with miR-15a or negative control into A549 cells, and after 24 h of transfection, luciferase activity was measured using the Dual-Glo luciferase assay kit. Statistical analysis was performed using SPSS 13.0 software (SPSS, Chicago, IL, USA). P values of less than 0.05 were considered statistically significant. miR-15a was significantly downregulated in NSCLC than in adjacent non-cancerous tissues. miR-15a overexpression remarkably inhibited cell viability, invasion, and migration and promoted the apoptosis of NSCLC cells. Additionally, inhibition of miR-15a expression had the opposite effects on tumor progression, while cell cycle remained unaltered. Furthermore, we identified that BCL2L2 was a target of miR-15a and negatively regulated by miR-15a at the translational level. miR-15a acts as a tumor suppressor in NSCLC by directly targeting BCL2L2 and may serve as a potential diagnostic biomarker and therapeutic target for NSCLC.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Biomarcadores Tumorais/biossíntese , Carcinoma Pulmonar de Células não Pequenas/genética , MicroRNAs/genética , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica
14.
Tumour Biol ; 36(10): 8185-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994569

RESUMO

Family of forkhead box transcription factors, including forkhead box P4 (FOXP4), plays an important role in oncogenesis. The current study is to evaluate the role of FOXP4 in regulating human non-small cell lung cancer (NSCLC). Quantitative RT-PCR and Western blot were performed to evaluate the gene and protein expressions of FOXP4 in six NSCLC cell lines and 55 NSCLC patients. Lentivirus of small hairpin RNA (FOXP4-shRNA) was used to downregulate FOXP4 in NSCLC cell lines A549 and H1703 cells. Its effect on NSCLC growth, invasion, and cell cycle were evaluated by cell proliferation assay, migration assay, and cell cycle assay, respectively. Dual luciferase assay and Western blot were used to examine whether microRNA-138 (miR-138) was an upstream regulator of FOXP4. The dependence of FOXP4 on miR-138 associated signaling pathway was evaluated by ectopically overexpressing enhancer of zeste homolog 2 (EZH2), a known miR-138 target in NSCLC. FOXP4 was highly expressed in both NSCLC cell lines and NSCLC patients. FOXP4 downregulation by FOXP4-shRNA markedly reduced cancer cell growth and invasion, as well as induced cell cycle arrest in A549 and H1703 cells. MiR-138 was confirmed to be an upstream regulator of FOXP4 and directly regulated FOXP4 expression in A549 and H1703 cells. FOXP4 downregulation-mediated inhibition on cancer cell growth and invasion was independent on overexpressing EZH2, another direct target of miR-138 in NSCLC. Our data demonstrated that FOXP4 was a critical regulator in NSCLC and independently associated with miR-138 regulation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Pulmão/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas , Apoptose , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Movimento Celular , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
15.
Tumour Biol ; 36(3): 1903-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25432132

RESUMO

The current study aims to investigate the fuctional role of miRNA-25 in non-small cell lung cancer (NSCLC) cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-25 in NSCLC cell lines and 11 pairs of human NSCLC and non-cancerous tissues. The inhibitor of miR-25 was stably transfected into NSCLC cell line A549 cells. Then the effects of downregulating miR-25 on cancer cell proliferation, cell cycle arrest, chemosensitivity to cisplatin, and growth of in vivo xenograft were investigated. Direct regulation of miR-25 on its target gene, cell division cycle 42 (CDC42), was examined by luciferase reporter assay, qRT-PCR and western blot. CDC42 was then upregulated in A549 cells to investigate its effect on miR-25-mediated NSCLC cell proliferation and cell cycle arrest. The expression of miR-25 in NSCLC cells or human tissues was significantly higher than that in normal lung cells or adjacent non-cancerous tissues, respectively. Downregulation of miR-25 markedly inhibited A549 cell proliferation, induced G1 cell cycle arrest, increased cisplatin sensitivity, and suppressed the growth of caner cell xenograft in vivo. CDC42 was confirmed to be the directly regulated by miR-25 in A549 cells. Upregulation of CDC42 in A549 cells rescued the inhibitory effect on proliferation and the G1 cell cycle arrest induced by miR-25 downregulation. Our study demonstrates miR-25, by targeting CDC42, is an important regulator in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Miotonina Proteína Quinase/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cisplatino/farmacologia , Regulação para Baixo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Miotonina Proteína Quinase/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Inhal Toxicol ; 27(14): 822-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26671198

RESUMO

OBJECTIVE: Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) and may modulate the immune response of exposed individuals. Mast cell function can be altered by cigarette smoking, but the role of smoking in COPD remains poorly understood. The current study aimed to explore the role of cigarette smoke extract (CSE)-treated mast cells in COPD pathogenesis. METHODS: Cytokine and chemokine expression as well as degranulation of bone marrow-derived mast cells (BMMCs) were detected in cells exposed to immunoglobulin E (IgE) and various doses of CSE. Adoptive transfer of CSE-treated BMMCs into C57BL/6J mice was performed, and macrophage infiltration and polarization were evaluated by fluorescence-activated cell sorting (FACS). Furthermore, a coculture system of BMMCs and macrophages was established to examine macrophage phenotype transition. The role of protease serine member S31 (Prss31) was also investigated in the co-culture system and in COPD mice. RESULTS: CSE exposure suppressed cytokine expression and degranulation in BMMCs, but promoted the expressions of chemokines and Prss31. Adoptive transfer of CSE-treated BMMCs induced macrophage infiltration and M2 polarization in the mouse lung. Moreover, CSE-treated BMMCs triggered macrophage M2 polarization via Prss31 secretion. Recombinant Prss31 was shown to activate interleukin (IL)-13/IL-13Rα/Signal transducers and activators of transcription (Stat) 6 signaling in macrophages. Additionally, a positive correlation was found between Prss31 expression and the number of M2 macrophages in COPD mice. CONCLUSION: In conclusion, CSE-treated mast cells may induce macrophage infiltration and M2 polarization via Prss31 expression, and potentially contribute to COPD progression.


Assuntos
Misturas Complexas/toxicidade , Macrófagos Alveolares/fisiologia , Mastócitos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fumaça/análise , Produtos do Tabaco/análise , Triptases/genética , Triptases/metabolismo
17.
Exp Hematol Oncol ; 13(1): 96, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350256

RESUMO

Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.

18.
Neuroscience ; 544: 75-87, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38423163

RESUMO

The cytoskeleton must be remodeled during neurite outgrowth, and Superior Cervical Ganglion 10 (SCG10) plays a critical role in this process by depolymerizing Microtubules (MTs), conferring highly dynamic properties to the MTs. However, the precise mechanism of action of SCG10 in the repair of injured neurons remains largely uncertain. Using transcriptomic identification, we discovered that SCG10 expression was downregulated in neurons after Spinal Cord Injury (SCI). Additionally, through mass spectrometry identification, immunoprecipitation, and pull-down assays, we established that SCG10 could interact with Adenosine Kinase (ADK). Furthermore, we developed an excitotoxicity-induced neural injury model and discovered that ADK suppressed injured neurite re-growth, whereas, through overexpression and small molecule interference experiments, SCG10 enhanced it. Moreover, we discovered ADK to be the upstream of SCG10. More importantly, the application of the ADK inhibitor called 5-Iodotubercidin (5-ITu) was found to significantly enhance the recovery of motor function in mice with SCI. Consequently, our findings suggest that ADK plays a negative regulatory role in the repair of injured neurons. Herein, we propose a molecular interaction model of the SCG10-ADK axis to regulate neuronal recovery.


Assuntos
Adenosina Quinase , Proteínas de Transporte , Estatmina , Animais , Camundongos , Adenosina Quinase/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microtúbulos/metabolismo , Neurônios/metabolismo , Estatmina/genética , Estatmina/metabolismo
19.
J Vis Exp ; (203)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314785

RESUMO

Spinal cord injury (SCI) due to traumatic injuries such as car accidents and falls is associated with permanent spinal cord dysfunction. Creation of contusion models of spinal cord injury by impacting the spinal cord results in similar pathologies to most spinal cord injuries in clinical practice. Accurate, reproducible, and convenient animal models of spinal cord injury are essential for studying spinal cord injury. We present a novel automated spinal cord injury contusion device for mice, the Guangzhou Jinan University smart spinal cord injury system, that can produce spinal cord injury contusion models with accuracy, reproducibility, and convenience. The system accurately produces models of varying degrees of spinal cord injury via laser distance sensors combined with an automated mobile platform and advanced software. We used this system to create three levels of spinal cord injury mice models, determined their Basso mouse scale (BMS) scores, and performed behavioral as well as staining assays to demonstrate its accuracy and reproducibility. We show each step of the development of the injury models using this device, forming a standardized procedure. This method produces reproducible spinal cord injury contusion mice models and reduces human manipulation factors via convenient handling procedures. The developed animal model is reliable for studying spinal cord injury mechanisms and associated treatment approaches.


Assuntos
Contusões , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Reprodutibilidade dos Testes , Medula Espinal/patologia , Modelos Animais , Contusões/patologia , Modelos Animais de Doenças
20.
ACS Nano ; 18(3): 2355-2369, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197586

RESUMO

Functional recovery following a spinal cord injury (SCI) is challenging. Traditional drug therapies focus on the suppression of immune responses; however, strategies for alleviating oxidative stress are lacking. Herein, we developed the zinc-organic framework (Zn@MOF)-based aggregation-induced emission-active nanozymes for accelerating recovery following SCI. A multifunctional Zn@MOF was modified with the aggregation-induced emission-active molecule 2-(4-azidobutyl)-6-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)-1H-phenalene-1,3-dione via a bioorthogonal reaction, and the resulting nanozymes were denoted as Zn@MOF-TPD. These nanozymes gradually released gallic acid and zinc ions (Zn2+) at the SCI site. The released gallic acid, a scavenger of reactive oxygen species (ROS), promoted antioxidation and alleviated inflammation, re-establishing the balance between ROS production and the antioxidant defense system. The released Zn2+ ions inhibited the activity of matrix metalloproteinase 9 (MMP-9) to facilitate the regeneration of neurons via the ROS-mediated NF-κB pathway following secondary SCI. In addition, Zn@MOF-TPD protected neurons and myelin sheaths against trauma, inhibited glial scar formation, and promoted the proliferation and differentiation of neural stem cells, thereby facilitating the repair of neurons and injured spinal cord tissue and promoting functional recovery in rats with contusive SCI. Altogether, this study suggests that Zn@MOF-TPD nanozymes possess a potential for alleviating oxidative stress-mediated pathophysiological damage and promoting motor recovery following SCI.


Assuntos
Traumatismos da Medula Espinal , Zinco , Ratos , Animais , Zinco/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Ácido Gálico/uso terapêutico , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA