RESUMO
Zeolitic Imidazolate (metal organic) Frameworks (ZIFs) and Prussian Blue Analogues (PBAs) are promising materials in electrochemical sensing due to their unique properties. In this study, a composite material comprising NiFe-PBA and ZIF-67 was synthesized and made to form a uniform layer onto a glassy carbon electrode (GCE) to enhance electrochemical performance for furazolidone (FZD) detection. The synthesized NiFe-PBA/ZIF-67 composite exhibited excellent sensitivity, selectivity, and stability towards FZD detection, with a low limit of detection (LOD). The electrochemical behaviour of FZD on the NiFe-PBA/ZIF-67/GCE electrode was investigated, revealing a diffusion-controlled process. Differential pulse voltammetry (DPV) analysis demonstrated the synergetic effect of the PBA/MOF core-shell structure in enhancing FZD electro-reduction. The sensor exhibited exceptional LOD of 0.007 µM. Selectivity studies confirmed the sensor's ability to distinguish FZD from potential interferents. Extensive evaluations demonstrated the sensor's reproducibility, repeatability, and long-term stability, affirming its practical utility. Real sample analysis further validated the sensor's excellent analytical capabilities in diverse matrices.
Assuntos
Técnicas Eletroquímicas , Ferrocianetos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Técnicas Eletroquímicas/métodos , Ferrocianetos/química , Eletrodos , Estruturas Metalorgânicas/química , Furazolidona/análise , Furazolidona/química , Limite de Detecção , Carbono/química , Zeolitas/química , ImidazóisRESUMO
An electrocatalyst with a large active site is critical for the development of a high-performance electrochemical sensor. This work demonstrates the fabrication of an iron diselenide (FeSe2)-modified screen-printed carbon electrode (SPCE) for the electrochemical determination of furaltadone (FLD). It has been prepared by the facile method and systematically characterized with various microscopic/spectroscopic approaches. Due to advantageous physiochemical properties, the FeSe2/SPCE showed a low charge-transfer resistance value of 200 Ω in 5.0 mM [Fe(CN)6]3-/4- containing 0.1 M KCl. More importantly, the FeSe2/SPCE exhibited superior catalytic performance compared to the bare SPCE for FLD sensing based on the electrochemical response in terms of a peak potential of -0.44 V (vs Ag/AgCl (sat. KCl)) and cathodic response current of -22.8 µA. Operating at optimal conditions, the FeSe2-modified electrode showed wide linearity from 0.01 to 252.2 µM with a limit of detection of 0.002 µM and sensitivity of 1.15 µA µM-1 cm-2. The analytical performance of the FeSe2-based platform is significantly higher than many previously reported FLD electrochemical sensors. Furthermore, the FeSe2/SPCE also has a promising platform for FLD detection with high sensitivity, good selectivity, excellent stability, and robust reproducibility. Thus, the finding above shows that the FeSe2/SPCE is a highly suitable candidate for the electrochemical determination of glucose levels for real-time applications such as in human urine and river water samples.
RESUMO
Significant advancements have been made in the development of CO2 reduction processes for applications such as electrosynthesis, energy storage, and environmental remediation. Several materials have demonstrated great potential in achieving high activity and selectivity for the desired reduction products. Nevertheless, these advancements have primarily been limited to small-scale laboratory settings, and the considerable technical obstacles associated with large-scale CO2 reduction have not received sufficient attention. Many of the researchers have been faced with persistent challenges in the catalytic process, primarily stemming from the low Faraday efficiency, high overpotential, and low limiting current density observed in the production of the desired target product. The highlighted materials possess the capability to transform CO2 into various oxygenates, including ethanol, methanol, and formates, as well as hydrocarbons such as methane and ethane. A comprehensive summary of the recent research progress on these discussed types of electrocatalysts is provided, highlighting the detailed examination of their electrocatalytic activity enhancement strategies. This serves as a valuable reference for the development of highly efficient electrocatalysts with different orientations. This review encompasses the latest developments in catalyst materials and cell designs, presenting the leading materials utilized for the conversion of CO2 into various valuable products. Corresponding designs of cells and reactors are also included to provide a comprehensive overview of the advancements in this field.
RESUMO
Type 2 diabetes mellitus is characterized by hyperglycemia and insulin resistance. It is spreading around the globe like a pandemic. Major factors behind the development of diabetes can be genetics, environmental factors, dietary choices and obesity. Many medicinal plants have anti-diabetic potential. This study has investigated the anti-diabetic effect of curry leaves extract. This study also investigated the chemical characterization of curry leaves. Phytochemicals including saponins, tannins, alkaloids, flavonoids, phenols and glycosides were also investigated. Encapsulated 5mg per kg of the body weight and 10mg per kg of the body weight were given to treatment groups I and II. Random blood sugar, fasting blood sugar and HbA1c of 45 diabetic female adults were measured on the 0-day and 45th days. All results were analyzed using the two-sample t-test in IBM SPSS Statistics 20. Curry leaves contained moisture (24.1±1.78)%, ash (17.82±2.13)%, nitrogen free extract (36.12±3.52)%, crude protein (8.32±0.83)%, crude fiber (6.98±2.31)% and crude fat (6.87±0.21)%. Mineral analysis showed that magnesium and calcium were major minerals present in curry leaves. Curry leaves extract contained saponins 2.71±0.23, flavonoids 7.84±0.42, tannins 0.91±0.09, glycosides 0.17±0.01, phenols 3.89±0.12, alkaloids 2.01±0.87. These phytochemicals were expressed in mg/100 g of the sample. Curry leaf extract showed a significant (p<0.05) reduction in fasting blood sugar, random blood sugar and glycated hemoglobin in both treatment groups.
Assuntos
Alcaloides , Diabetes Mellitus Tipo 2 , Murraya , Saponinas , Adulto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Murraya/química , Taninos/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Alcaloides/análise , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/análise , Flavonoides/uso terapêutico , Flavonoides/análise , Fenóis/análise , Suplementos Nutricionais/análise , Glicosídeos , Saponinas/uso terapêutico , Saponinas/análise , Peso Corporal , Folhas de Planta/químicaRESUMO
Hyperglycemia is a condition often observed in diabetics, dyslipidemia and obese. It is a major factor behind the development of diabetes and the reasons can be genetics, environmental factors, dietary choices and obesity. Many medicinal plants have anti-diabetic potential. This study investigated the anti-hyperglycemic effect of apple peel extract. This study also investigated the chemical characterization of apple peel. Phytochemicals including total phenolics and flavonoids were determined. Encapsulated 350mg/day was given to treatment groups. Random blood sugar, fasting blood sugar and HbA1c of 45 diabetic female adults was measured on the 0-day and 45th day. Results showed that apple peel contained moisture (14.71±3.57)%, ash (17.82±2.13)%, nitrogen free extract (32.12±3.52)%, crude protein (6.89±0.83)%, crude fiber (19.17±0.21)% and crude fat (9.91±2.31)%. Findings showed that apple peel contains magnesium (6.61±1.088), calcium (8.17±0.32), zinc (14.08±1.21) and potassium (67.21±1.86). These findings were shown in mg in kg. Apple peel extract contained total phenolic content (TPC) of 8.14±1.07 and total phenolic content (TFC) of 4.89±1.81. Apple peel extract showed a significant reduction in all blood parameters of hyperglycemia. All results were significant at p<0.05.
Assuntos
Hiperglicemia , Malus , Humanos , Malus/química , Frutas/química , Antioxidantes/química , Glicemia/análise , Fenóis/análise , Suplementos Nutricionais , Hiperglicemia/tratamento farmacológicoRESUMO
Aspergillus fumigatus is a green echinulate with greenish phialides and 2.5-3 mm conidia. The diverse biological functions of A. fumigatus secondary metabolites make them interesting. The ethyl acetate extract of A. fumigatus was tested for antibacterial activity. Culture media, temperature, incubation and pH were optimized for A. fumigatus growth. Continuous 150rpm agitation incubated the fungus at 28°C for 10 days. Potato Dextrose Broth at 28°C in shaking incubator at pH 04 produced the most biomass and secondary metabolites. Metabolite antibacterial activity was tested. Salmonella flexneri had the greatest zone of inhibition at 100µl (25.66mm) while Staphylococcus aureus had the least (16.33mm). At 75µg/mL, S. flexneri showed 23.66mm activity and S. typhi 14.66mm. At 50µg/mL, S. flexneri was 21.33mm and S. typhi 12.33mmMBC was 0.01µg/µl and MIC50 varied. At 100µg/mL, the metabolites showed antifungal efficacy against Penicillium chrysogenum (26.33mm) but not A. flavus (21.33mm). A. oryzae was significantly inhibited at 75µg/mL (26.33mm) and 50µg/mL (20.33mm). 1000µl demonstrated 100% phytotoxicity, 100µl 60% and 10µl 50%. Bactrocera cucurbitae, Sitotroga cerealella and Callosobruchus maculatus were killed at 150, 100 and 75µl. Metabolites and antibiotics synergized well. Metabolites have alkanes, esters and ethers in their infrared spectra.
Assuntos
Alcanos , Aspergillus fumigatus , Antibacterianos/farmacologia , Antifúngicos/farmacologia , BiomassaRESUMO
Cirrhosis and liver cancer are both caused by hepatitis C virus (HCV) infection of the liver. Patients with HCV cirrhosis may be treated with one of many antiviral medications, depending on their specific genotype. Samples of cirrhotic HCV were obtained from 190 people at the Khyber Teaching Hospital and the Hayatabad Medical Complex in Peshawar, Pakistan. Multiplex and real-time PCR were used to assess the genotypes and viral loads of the samples, respectively. Sixty patients were given sofosbuvir plus daclatasvir with ribavirin, while the remaining 56 patients were given sofosbuvir with ribavirin for a period of 12-24 weeks. LFTs were also tracked both before and after therapy. Group I (sofosbuvir + daclatasvir) had a sustained virological response of 82.70 percent. Group II (sofosbuvir + daclatasvir with ribavirin) had an 86% sustained virological response, whereas group III (84% sustained virological response) received only ribavirin. When compared to other genotypes, genotype 3 showed the most impressive sustained virologic response (SVR) to the antiviral medicines. Based on the results of this trial, we propose sofosbuvir + daclatasvir ribavirin for the treatment of cirrhotic patients with various HCV genotypes since it produces the greatest sustained virological response.
Assuntos
Antivirais , Hepatite C , Humanos , Antivirais/uso terapêutico , Genótipo , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico , Resposta Viral SustentadaRESUMO
Citrus sinensis is an important member of the genus Citrus which contains phenolic compounds and bioflavonoids which have antihyperlipidemic and antiatherogenic effects. It also has the potential to reduce oxidative stress. To investigate the antihyperlipidemic effect of orange peel powder was encapsulated and analyzed in hyperlipidemic patients. Results showed that it contains moisture (12.2%), ash content (7.9%), crude fat (0.78%), crude protein (12.37%) and crude fiber (13.2%). Total phenolic content and total flavonoid content were observed as 163.17 mg and 17.23mg in quercetin equivalent per gram a dry weight basis. Furthermore, the Orange peel powder was given in the form of medicinal capsules to hyperlipidemia male subjects. The experimental groups (G1 and G2) were given orange peel powder in capsules 400mg/d to the G1 group and 800mg/d to the G2 group for the time of 45 days. The serum lipid profile of patients was measured before and after the experimental trial. The result showed that G1 and G2 showed a decrease in plasma lipid parameters and increased high-density lipoprotein content in blood substantially as compared to G0. Thus, it was concluded from the results that orange peel powder depicts a significant impact on treating hyperlipidemia.
Assuntos
Citrus sinensis , Citrus , Hiperlipidemias , Humanos , Masculino , Cápsulas , Citrus/química , Citrus sinensis/química , Flavonoides , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Lipídeos , Fenóis , PósRESUMO
Selenium is a mineral that is essential to human health and is widely recognized for its responsibilities as a powerful anticancer vitamin and antibacterial vitamin. Selenium also plays a critical part in the production of vitamin D. The purpose of this research was to evaluate the particular effects that selenium nano-particles (SeNPs') had on the infectious agent Staphylococcus aureus as well as the breast cancer cell lines MCF-7 and MDA-MB-231. The proportion of MDA-MB-231 and MCF-7 cells that underwent late apoptosis was dramatically increased by selenium nanoparticles, whereas the number of cells that underwent cell expansion was significantly reduced. There was a wide range of variability in the effects of selenium nanoparticle treatment on cell growth apoptosis, apoptosis rates and patterns of cell cycle arrest. After 2, 4 and 6 hours, researchers found that the development of S. aureus was significantly reduced by selenium nanoparticles at doses of 8.0, 16.0 and 32g/mL. In addition to this, the presence of selenium nanoparticles resulted in a reduced percentage of bacteria that were still alive. According to the findings of the study, there is a need for more research into selenium nanoparticles with the intention of preventing and treating infections caused by S. aureus.
Assuntos
Selênio , Humanos , Selênio/farmacologia , Células MCF-7 , Staphylococcus aureus , Vitaminas , Vitamina DRESUMO
Moringa oleifera (MO) phytochemicals and therapeutic properties improve hyperglycemia and treat type 2 diabetes. Thus, this study examined the effects of MO leaf capsules on blood glucose management in type 2 diabetic mellitus (T2DM) and hypertension and their safety. A prospective placebo-controlled experiment randomly assigned 24 patients to receive 3g and 6g of MO leaf capsules twice a day or a placebo for three months. Pre- and post-study lab and clinical outcomes were assessed. The placebo control group and 3g MO leaf showed a minor change, whereas 6g and control placebo showed a considerable drop in examined features. MO usage was safe. In T2DM patients, MO leaves lowered blood pressure, requiring further study. MO leaves may help T2DM patients manage blood pressure and blood sugar, according to the study. MO's therapeutic components need more research.
Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Moringa oleifera , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cápsulas , Estudos Prospectivos , Hipertensão/tratamento farmacológico , Folhas de PlantaRESUMO
Binary metal oxides with carbon nanocomposites have received extensive attention as research hotspots in the electrochemistry field owing to their tunable properties and superior stability. This work illustrates the development of a facile sonochemical strategy for the synthesis of a copper bismuthate/graphene (GR) nanocomposite-modified screen-printed carbon electrode (CBO/GR/SPCE) for the electrochemical detection of catechol (CT). The formation of an as-prepared CBO/GR nanocomposite was comprehensively characterized. The electrochemical behavior of the CBO/GR/SPCE toward CT was investigated by voltammetry and amperometry techniques. The fabricated CBO/GR/SPCE manifests an excellent electrocatalytic performance toward CT with a lower peak potential and a higher current value compared to those of CBO/SPCE, GR/SPCE, and bare SPCE. It is attributed to enhanced electro-catalytic activity, synergetic effects, and good active sites of the CBO/GR nanocomposite. Under the electrochemical condition, the CBO/GR/SPCE displayed a wide linear sensing range, trace-level detection limit, acceptable sensitivity, and excellent selectivity. Furthermore, our proposed CBO/GR electrode was employed successfully for CT detection in water samples.
Assuntos
Grafite , Nanocompostos , Carbono , Catecóis , Cobre/química , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Nanocompostos/químicaRESUMO
Environmental route such as degradation of toxic dyes can be improved through photochemical activity such as light driven photocatalytic degradation. Herein, fluorine and tin simultaneously doped TiO2 nanoparticles were synthesized and characterized. The formation of anatase phase in synthesized samples and the reduction in the crystallite size of doped TiO2 was confirmed from XRD results. The existence of O-Ti-O stretching vibration in pure and co-doped TiO2 confirmed from FTIR results. Optical studies reveal that the band gap of co-doped TiO2 is increased and hence it was concluded that the particle size of co-doped TiO2 is reduced compared with as-synthesized TiO2. The morphologies of TiO2 changed significantly with doping of fluorine and tin. It reveals majority of the particles are hexagons, pentagons and ellipse shaped and some of them are spheres with a mean particle size of 31.17 nm. PL studies showed the reduction in intensity for Sn-F/TiO2 accredited to the lesser recombination rate of electron-hole pair under UV light irradiation. Thus tin and fluorine doped TiO2 could be considered as a good candidate for photocatalytic activity. The photocatalytic activity of TiO2 and Sn-F/TiO2 nanoparticles was analyzed separately through the degradation of methylene blue (MB) under visible and UV light irradiation. The use of Sn and F ions in the synthesis of TiO2 are revealed not only create small sized nanoparticles but these water soluble nanoparticles have very good antibacterial and antifungal action by inhibiting the growth of bacteria and fungus.
Assuntos
Nanopartículas , Tiazinas , Catálise , Luz , Nanopartículas/química , Fotoquímica , Titânio/química , Raios UltravioletaRESUMO
In this paper, Magnesium Zinc Ferrite (MZF) nanoparticles (Mg0.8-xZnxFe2O4, where x = 0.2, 0.4 and 0.6) are successfully fabricated by combustion process. The prepared nanoparticles are characterized through XRD, FTIR, UV, SEM, EDS and TEM. It has been confirmed that the samples produced cubic spinel structure with crystal size in the range of 13-15 nm. From the ultraviolet spectrum, the optical band gap is calculated which ranges from 5.6 to 4.6 eV. TEM micrographs confirm the nanocrystalline nature of combustion derived ferrite nanoparticles with average particle diameter of 7-28 nm. Antibacterial studies confirmed that the nanoparticles are toxic to Pseudomonas aeruginosa consists of greatest zone of inhibition of 25 mm. The antibacterial and photocatalytic studies exhibited improved activity which is strongly influenced by the zinc doping. Photocatalytic degradation study reveal that the prepared nanoparticles function as perfect catalyst for degradation of Methylene Blue (MB) dye and Textile Dyeing Waste Water (TDWW) under UV light, thus revealing their potential usage on organic pollutants.
Assuntos
Raios Ultravioleta , Águas Residuárias , Antibacterianos , Catálise , Têxteis , ZincoRESUMO
TiO2, ZnO, and SnO2 metal oxides were synthesized by the sol-gel method and heterojunctions were fabricated by combining TiO2 with either ZnO or SnO2 in a 1:1 ratio using mechanochemical ball milling process. The ball milling process promotes phase transition of TiO2 from anatase to rutile and yields ternary heterojunction of the type TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 (A-anatase and R-rutile). These ternary heterojunctions were characterized by various analytical techniques and its photocatalytic efficiency is evaluated using 4-Chloro Phenol as a model compound under UV and solar light. The enhanced catalytic activity of TiO2(A)/TiO2(R)/ZnO heterojunction is attributed to the formation of Ti3+-Vo defect states which leads to the efficient charge carrier separation. During the ball milling process severe crystal deformation takes place in TiO2 and ZnO lattices by creating crystal lattice distortion which leads to the formation of defects due to valency mismatch between Ti4+ and Zn2+. A mechanistic pathway is proposed for the enhanced photocatalytic activity of the ternary heterojunctions.
Assuntos
Óxido de Zinco , Luz , Semicondutores , TitânioRESUMO
The present research work focuses on preparing 3D transition metal doped copper oxide nanostructures through sonication method and to investigate the effect of doping different transition metal into copper oxide (CuO) on the basic properties of CuO nanoparticles and, to study the photocatalytic behaviour of the doped CuO samples. The morphological studies performed with the help of SEM revealed the formation of flower like CuO 3D nanostructures for all the doped samples. The slight shift in the position of peaks in the x-ray diffraction (XRD) pattern confirms that doping has been successfully done into CuO. Also, the sharp diffraction peaks suggest the polycrystalline nature of the sample with monoclinic structure. The UV-vis absorption analysis reveals a bandgap of 2.26, 2.12 and 2.15 eV for the CuO samples doped with nickel, zinc, and iron respectively via Tauc plot. The photocatalytic performance of the samples tested through the degradation of methylene blue (MB) dye suggests that samples doped with Zn shows better degradation. Thus, it is evident that the morphology and the optical properties of the CuO can be tailored by doping transition metal into it.
Assuntos
Nanopartículas , Nanoestruturas , Catálise , Cobre , Luz , Azul de MetilenoRESUMO
Objectives: The HAT2CH2 score has been evaluated for predicting new-onset atrial fibrillation in several clinical conditions, but never for adverse neurologic events. We aimed to evaluate the effectiveness of HAT2CH2 score in predicting neurologic events in patients with cardiac implantable electronic device (CIED), comparing with atrial high-rate episodes (AHRE). Methods: This case-control study enrolled 314 consecutive patients aged 18 years or older with CIED implantation between January 2015 and April 2021. Patient data were analyzed retrospectively. The primary endpoint was subsequent neurologic events (NE) after implantation. AHRE was defined as > 175 bpm (Medtronic®) lasting ≥ 30 seconds. Variables associated with independent risk of NE were identified using multivariate Cox regression analysis with time-dependent covariates. Results: Patients' median age was 73 years and 61.8% of them were male. During follow-up (median 32 months), 18 NE occurred (incidence rate 2.15/100 patient-years, 95% CI 1.32-4.30). Multiple Cox regression analysis showed that the HAT2CH2 score (HR 2.424, 95% CI 1.683 - 3.492, p < 0.001) was an independent predictor for NE. Optimal HAT2CH2 score cutoff value was 3 with highest Youden index (AUC, 0.923; 95% CI, 0.881-0.966; p < 0.001). Both AHRE ≥ 1 minute and HAT2CH2 score ≥ 3 had the highest AUC of the receiver-operating characteristic (0.898, 95% CI, 0.831-0.965, p < 0.001). Significant increase was observed in NE occurrence rates using the HAT2CH2 score (p < 0.001). Conclusion: The HAT2CH2 score and episodes of AHRE lasting ≥ 1 minute are independent risk factors for NE in patients with CIED.
Assuntos
Fibrilação Atrial , Desfibriladores Implantáveis , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Estudos de Casos e Controles , Desfibriladores Implantáveis/efeitos adversos , Eletrônica , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fatores de RiscoRESUMO
AIMS: Several predicting models have been evaluated for new-onset atrial fibrillation (AF) in several clinical conditions, but never in patients with cardiac implantable electronic devices (CIED). We aimed to evaluate the five predicting models compared with atrial high rate episodes (AHRE) to predict new AF in patients with CIED. METHODS AND RESULTS: We retrospective enrolled 470 consecutive patients with CIED and without a history of AF. The five predicting models, including CHA2 DS2 -VASc score, C2 HEST score, mCHEST score, HAT2 CH2 score, and HAVOC score were used. The primary endpoint was new AF documented by 12-lead electrocardiography (ECG) or 30-s ECG strip. Multivariable Cox regression analysis was used to determine variables associated with independent factors of new AF. Patients' median age was 76 years and 58.7% were male. During follow-up (median 29 months), 34 new AF occurred (incidence rate 2.99/100 patient-years, 95% CI 1.67-6.20). Multivariable Cox regression analysis showed AHRE ≥6 min and 24 h, and HAT2 CH2 score were independent predictors for new AF. Optimal AHRE cutoff value was 9.3 min with highest Youden index (AUC, 0.806; 95% CI, 0.722-0.889; p < .001). The AF occurrence rate of AHRE ≥9.3 min was 7 times AHRE <9.3 min (p < .001). CONCLUSIONS: We compared 5 predicting models for new AF in patients with CIED and without a history of AF. AHRE ≥6 min and 24 h, and HAT2 CH2 score were independent predictors for AF.
Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Idoso , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Eletrocardiografia/efeitos adversos , Eletrônica , Feminino , Átrios do Coração , Humanos , Masculino , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologiaRESUMO
Hepatocellular carcinoma (HCC) is a common type of liver cancer and is a leading cause of death worldwide. Signal transducer and activator of transcription 3 (STAT3) is involved in HCC progression, migration, and suppression of apoptosis. This study investigates the apoptotic effect of the dietary antioxidant (n-3 PUFAs) on HepG2 cells and analyzes the underlying molecular mechanisms of this effect both in vivo and in vitro. In vivo study: Seventy-five adult male albino rats were divided into three groups (n = 25): Group I (control): 0.9% normal saline, intraperitoneal. Group II: N-Nitrosodiethylamine (200 mg/kg b.wt) intraperitoneal, followed by phenobarbital 0.05% in drinking water. Group III: as group II followed by n-3 PUFAs intubation (400 mg/kg/day). In vivo study: liver specimens for biochemical, histopathological, and immunohistochemical examination. In vitro study: MTT assay, cell morphology, PCR, Western blot, and immunohistochemical analysis. n-3 PUFAs significantly improved the histopathologic features of HCC and decreased the expression of anti-apoptotic proteins. Further, HepG2 cells proliferation was suppressed through inhibition of the STAT3 signaling pathway, cyclin D1, and Bcl-2 activity. Here we report that n-3 PUFAs may be an ideal cancer chemo-preventive candidate by targeting STAT3 signaling, which is involved in cell proliferation and apoptosis.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/patologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Animais , RatosRESUMO
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties, such as significantly enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of these advantages, nanocomposites have been used in a variety of applications, including catalysts, electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years, notably in the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further; we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
RESUMO
In this work, Ni-doped ZrO2 nanoparticles (NPs) were used to decorate multi-walled carbon nanotubes (MWCNTs) to obtain a Ni-ZrO2/MWCNT nanocomposite, which acted as an efficient electrode material for the highly sensitive electrochemical detection of the anti-inflammatory drug 5-amino salicylic acid (5-ASA). The Ni-ZrO2 NPs were obtained through a facile co-precipitation method, and the subsequent support of these Ni-ZrO2 NPs onto MWCNTs was accomplished via an ultrasonication technique. Supporting Ni-ZrO2 NPs on MWCNTs not only results in excellent catalytic properties, but it also substantially enhances the surface area, electrical conductivity, and electron transfer process. The electrochemical activity of the synthesized Ni-ZrO2/MWCNT nanocomposite was systematically investigated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The constructed Ni-ZrO2/MWCNT-modified glassy carbon (GC) electrode manifests superior electrocatalytic oxidation activity toward 5-ASA, with a lower peak potential compared with Ni-ZrO2-NP- and MWCNT-modified GC electrodes. Importantly, the proposed biosensor exhibited excellent sensitivity during the detection of 5-ASA with a wide linear concentration range (0.001-500 µM) and a low detection limit of 0.0029 µM. Moreover, the biosensor demonstrated excellent repeatability, reproducibility, stability, and high specificity toward 5-ASA detection in the presence of different interfering species. Furthermore, the biosensor showed satisfactory recovery rates in complex biological samples, such as human blood serum, human urine, and 5-ASA tablet samples.