Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 4629-4642, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251770

RESUMO

Bismuth chalcogenide and its derivatives have been attracting attention in various fields as semiconductors or topological insulators. Inspired by the high piezoelectric properties of Janus Bi2TeSeS monolayer and the excellent optical absorption properties of the Bi2X3 (X = Te, Se, S) monolayers, we theoretically predicted four new-type two-dimensional (2D) monolayers Janus Bi2X2Y (X = Te, Se; Y = Te, Se, S) using the first principles combined with density functional theory (DFT). The thermal, dynamic, and mechanical stabilities of Janus Bi2X2Y monolayers were confirmed based on ab initio molecular dynamics (AIMD) simulations, phonon dispersion, and elastic constants calculations. Their elastic properties, band structures, piezoelectric, and optical properties were systematically investigated. It was found that Janus Bi2X2Y monolayers have a typical Mexican hat-shaped valence band edge structure and, therefore, have a ring-shaped flat band edge, which results in their indirect band gaps. The results show that Janus Bi2X2Y monolayers are semiconductors with moderate band gaps (0.62-0.98 eV at the HSE + SOC level). After considering the electron-phonon renormalization (EPR), the band gaps are reduced by less than 5% at 0 K under the zero-point renormalization (ZPR) and further reduced by approximately 10% at 300 K. Besides, Janus Bi2X2Y monolayers also exhibit excellent optical absorption properties in the blue-UV light region, with the peak values at the order of 8 × 105 cm-1. Particularly, the Janus Bi2Te2S monolayer was found to exhibit a piezoelectric strain coefficient d11 of up to 20.30 pm V-1, which is higher than that of most of the 2D materials. Our results indicate that Janus Bi2X2Y monolayers could be promising candidates in solar cells, optical absorption, and optoelectronic devices; especially, a Janus Bi2Te2S monolayer can also be an excellent piezoelectric material with great prospects in the fields of mechanical and electrical energy conversion.

2.
Phys Chem Chem Phys ; 26(10): 8515-8527, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38411591

RESUMO

Two-dimensional ferromagnetic materials with intrinsic half-metallic properties have strong application advantages in nanoscale spintronics. Herein, density functional theory calculations show that monolayer ScCl is a ferromagnetic metallic material when undoped (n = 0), and the transition from metal to half-metal occurs with the continuous doping of holes. On the contrary, as the concentration of doped electrons increases, the system will exhibit metallic characteristics, which is particularly evident from a variation in spin polarizability. Furthermore, we have discussed how doped carriers affect the shape of the Fermi surface and the Fermi velocity of electrons. Most importantly, Monte Carlo simulations show that the ScCl monolayer is particularly regulated by carrier concentration (n) and magnetic field (h). Additionally, trends in energy and magnetic exchange coupling in different magnetic configurations (AFM phase and FM phase) with different doping concentrations are presented. When n < -0.16, the material is not only a half-metallic material that easily flips the magnetic axis, but also proves to be a candidate ferromagnetic material that works stably at room temperature in terms of dynamic stability. In addition, the origin of magnetocrystalline anisotropy is analyzed, and the contribution of different orbitals to spin-orbit coupling is presented. Moreover, we note that when magnetic field is small (h < 1 T), the change in size has a significant effect on ferromagnetic phase transition. However, when the system size is large (size >15 nm), TC is less sensitive to magnetic field. In addition, hole doping and size effect will greatly affect the hC of the system, but when the hole doping exceeds the critical value (n = -0.16), its influence on the hysteresis loop is no longer obvious. These interesting magnetic phenomena and easily adjustable physical properties show us that monolayer ScCl will be a promising functional material.

3.
Phys Chem Chem Phys ; 26(4): 3159-3167, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190261

RESUMO

A superior piezoelectric coefficient and diminutive lattice thermal conductivity are advantageous for the application of a two-dimensional semiconductor in piezoelectric and thermoelectric devices, whereas an imperfect piezoelectric coefficient and large lattice thermal conductivity limit the practical application of the material. In this study, we investigate how the equibiaxial strain regulates the electronic structure, and mechanical, piezoelectric, and thermal transport properties. Tensile strain can deduce the bandgap of the monolayer CrX2 (X = S, Se, Te), whereas compressive strain has an opposite effect. Additionally, the transition from a semiconductor to a metal state and the transition between direct and indirect band gaps will occur at appropriate strain values, so the electronic structure can be effectively regulated. The reason is the different sensitivities of the energy corresponding to K and Γ on the valence band to the strain due to the changes in different orbital overlaps. The tensile strain can effectively improve the flexibility of monolayers CrX2, which provides a possibility for the application of flexible electronic devices. Furthermore, the tensile strain can improve the piezoelectric strain coefficient of monolayers CrX2. Using Slacks formulation, we calculate the lattice thermal conductivity, and the tensile biaxial strain can reduce the lattice thermal conductivity. Our research provides a strategy to enhance the piezoelectric and flexible electronic applications and decrease the lattice thermal conductivity, which can benefit the thermoelectric applications.

4.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804489

RESUMO

The thermophysical properties and elemental abundances of the noble gases in terrestrial materials can provide unique insights into the Earth's evolution and mantle dynamics. Here, we perform extensive ab initio molecular dynamics simulations to determine the melting temperature and sound velocity of neon up to 370 GPa and 7500 K to constrain its physical state and storage capacity, together with to reveal its implications for the deep interior of the Earth. It is found that solid neon can exist stably under the lower mantle and inner core conditions, and the abnormal melting of neon is not observed under the entire temperature (T) and pressure (P) region inside the Earth owing to its peculiar electronic structure, which is substantially distinct from other heavier noble gases. An inspection of the reduction for sound velocity along the Earth's geotherm evidences that neon can be used as a light element to account for the low-velocity anomaly and density deficit in the deep Earth. A comparison of the pair distribution functions and mean square displacements of MgSiO3-Ne and Fe-Ne alloys further reveals that MgSiO3 has a larger neon storage capacity than the liquid iron under the deep Earth condition, indicating that the lower mantle may be a natural deep noble gas storage reservoir. Our results provide valuable information for studying the fundamental behavior and phase transition of neon in a higher T-P regime, and further enhance our understanding for the interior structure and evolution processes inside the Earth.

5.
Mol Med ; 29(1): 131, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740180

RESUMO

Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.


Assuntos
Lesões Encefálicas Traumáticas , Encefalopatia Traumática Crônica , Disfunção Cognitiva , Humanos , Terapia por Exercício , Exercício Físico
6.
Phys Chem Chem Phys ; 25(38): 26152-26163, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740346

RESUMO

Inspired by the interesting and novel properties exhibited by Janus transition metal dichalcogenides (TMDs) and two-dimensional pentagonal structures, we here investigated the structural stability, mechanical, electronic, photocatalytic, and optical properties for a class of two-dimensional (2D) pentagonal Janus TMDs, namely penta-MSeTe (M = Ni, Pd, Pt) monolayers, by using density functional theory (DFT) combined with Hubbard's correction (U). Our results showed that these monolayers exhibit good structural stability, appropriate band structures for photocatalysts, high visible light absorption, and good photocatalytic applicability. The calculated electronic properties reveal that the penta-MSeTe are semiconductors with a bandgap range of 2.06-2.39 eV, and their band edge positions meet the requirements for water-splitting photocatalysts in various environments (pH = 0-13). We used stress engineering to seek higher solar-to-hydrogen (STH) efficiency in acidic (pH = 0), neutral (pH = 7) and alkaline (pH = 13) environments for penta-MSeTe from 0% to +8% biaxial and uniaxial strains. Our results showed that penta-PdSeTe stretched 8% along the y direction and demonstrates an STH efficiency of up to 29.71% when pH = 0, which breaks the theoretical limit of the conventional photocatalytic model. We also calculated the optical properties and found that they exhibit high absorption (13.11%) in the visible light range and possess a diverse range of hyperbolic regions. Hence, it is anticipated that penta-MSeTe materials hold great promise for applications in photocatalytic water splitting and optoelectronic devices.

7.
Phys Chem Chem Phys ; 25(14): 10143-10154, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974982

RESUMO

The structural, electronic, and magnetic properties of vanadium disulfide VS2 monolayers were investigated using first-principles calculations and Monte Carlo (MC) simulations. The results of molecular dynamics simulations and phonon dispersion showed that the VS2 monolayer has good dynamic and thermodynamic stabilities. Based on the results of the band structure, we also explore the effect of carrier concentrations on the spin gap, spin polarization and the direction of the easy magnetic axis. Our results demonstrated that doping an appropriate amount of holes can cause the reversal of the easy magnetic axis and maintain nearly 100% spin polarization, which greatly improves the application possibility of the VS2 monolayer as a spintronic device. The contribution of different orbits to the spin-orbit coupling (SOC) effect is given in magnetocrystalline anisotropy energy, which provides a theoretical basis for explaining the origin of magnetic crystal anisotropy. Based on the MC simulations, we also showed the influences of different parameters (carrier concentrations, magnetic field and crystal field) on the magnetothermal properties of the VS2 monolayer. It is found that the increase of hole doping concentrations can promote the increase of the Curie temperature, while the increase of electron doping concentrations will greatly weaken the Curie temperature. Furthermore, according to the influences of different parameters on the Curie temperature and spin polarization, we conclude that a suitably enhanced magnetic field and appropriate hole concentrations will not only make the system maintain high spin polarization, but also make the system exhibit ferromagnetic properties above room temperature.

8.
Phys Chem Chem Phys ; 25(15): 10827-10835, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37013675

RESUMO

In this paper, the electronic band structure, Rashba effect, hexagonal warping, and piezoelectricity of Janus group-VIA binary monolayers STe2, SeTe2, and Se2Te are investigated based on density functional theory (DFT). Due to the inversion asymmetry and spin-orbit coupling (SOC), the STe2, SeTe2 and Se2Te monolayers exhibit large intrinsic Rashba spin splitting (RSS) at the Γ point with the Rashba parameters 0.19 eV Å, 0.39 eV Å, and 0.34 eV Å, respectively. Interestingly, based on the k·p model via symmetry analysis, the hexagonal warping effect and a nonzero spin projection component Sz arise at a larger constant energy surface due to nonlinear k3 terms. Then, the warping strength λ was obtained by fitting the calculated energy band data. Additionally, in-plane biaxial strain can significantly modulate the band structure and RSS. Furthermore, all these systems exhibit large in-plane and out-of-plane piezoelectricity due to inversion and mirror asymmetry. The calculated piezoelectric coefficients d11 and d31 are about 15-40 pm V-1 and 0.2-0.4 pm V-1, respectively, which are superior to those of most reported Janus monolayers. Because of the large RSS and piezoelectricity, the studied materials have great potential for spintronic and piezoelectric applications.

9.
Neurochem Res ; 47(12): 3583-3597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322368

RESUMO

Postoperative neurocognitive disorder (PND) is a disease that frequently develops in older patients during the perioperative period. It seriously affects the quality of life of the affected patients. Despite advancements in understanding PND, this disorder's mechanisms remain unclear, including pathophysiological processes such as central synaptic plasticity and function, neuroinflammation, excitotoxicity, and neurotrophic support. Growing evidence suggests that microenvironmental changes are major factors for PND induction in older individuals. Exosomes are carriers for transporting different bioactive molecules between nerve cells in the microenvironment and maintaining intercellular communication and tissue homeostasis. Studies have shown that exosomes and microRNAs (miRNAs) are involved in various physiological and pathological processes, including neural processes related to PND, such as neurogenesis and cell death, neuroprotection, and neurotrophy. This article reviews the effects of exosomes and miRNAs on the brain microenvironment in PND and has important implications to improve PND diagnosis, as well as to develop targeted therapy of this disorder.


Assuntos
Exossomos , MicroRNAs , Humanos , Idoso , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Qualidade de Vida , Comunicação Celular , Transtornos Neurocognitivos/genética , Transtornos Neurocognitivos/metabolismo
10.
Phys Chem Chem Phys ; 25(1): 274-285, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475497

RESUMO

Janus transition metal dichalcogenide monolayers (TMDs) have attracted wide attention due to their unique physical and chemical properties since the successful synthesis of the MoSSe monolayer. However, the related studies of Janus monolayers of transition metal halides (TMHs) with similar structures have rarely been reported. In this article, we systematically investigate the electronic properties, piezoelectric properties, optical properties, and carrier mobility of new Janus TiXY (X ≠ Y, X/Y = Cl, Br, I) monolayers using first principles calculations for the first time. These Janus TiXY monolayers are thermally, dynamically, and mechanically stable, and their energy bands near the Fermi level (EF) are almost entirely contributed by the central Ti atom. Besides, the Janus TiXY monolayers exhibit excellent in-plane and out-of-plane piezoelectric effects, especially with an in-plane piezoelectric coefficient of ∼4.58 pm V-1 for the TiBrI monolayer and an out-of-plane piezoelectric coefficient of ∼1.63 pm V-1 for the TiClI monolayer, suggesting their promising applications in piezoelectric sensors and energy storage applications. The absorption spectra of Janus TiXY monolayers are mainly distributed in the visible and infrared regions, implying that they are fantastic candidates for photoelectric and photovoltaic applications. The obtained carrier mobilities revealed that TiXY monolayers are hole-type semiconductors. Under uniaxial compressive strain, the hole mobilities of these monolayers are gradually improved, indicating that TiXY monolayers have potential applications in the field of flexible electronic devices.

11.
Phys Chem Chem Phys ; 24(43): 26753-26763, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314268

RESUMO

Bismuth telluride (Bi2Te3) and its derivatives are often focused on as thermoelectric materials around room temperature. In this work, we theoretically predicted two new types of Bi2Te3-based two-dimensional materials Bi2SSe2 and Bi2S2Se using density functional theory (DFT) combined with Boltzmann transport theory. The thermal, dynamic, and mechanical stabilities of Bi2SSe2 and Bi2S2Se monolayers are confirmed using ab initio molecular dynamics (AIMD) simulations, phonon dispersion, and elastic constant calculations. The phonon transport properties, including lattice thermal conductivity, group velocity, Grüneisen parameter, converged scattering rate, and phonon lifetimes contributed by different branches, are systematically investigated. The electronic and thermoelectric properties, including carrier mobility (µ), Seebeck coefficient (S), electrical conductivity (σ), power factors, and figure of merit (zT) along the zigzag and armchair directions as a function of carrier concentration at different temperatures, are also investigated. It is found that the Bi2SSe2 and Bi2S2Se monolayers have moderate indirect band gaps (0.92 eV and 1.08 eV at the PBE level, respectively) and low lattice thermal conductivities (4.35 and 5.37 W m-1 K-1 at 300 K, respectively). The largest zT values of Bi2SSe2 and Bi2S2Se monolayers are 0.50 and 0.28 at 300 K and 1.39 and 0.93 at 700 K for p-doping types, respectively. The Bi2SSe2 and Bi2S2Se monolayers are predicted to show high optical absorption peaks at 8 × 105 cm-1 in the visible and near-UV light region, respectively. Our results indicate that both Bi2SSe2 and Bi2S2Se could be promising candidates in energy conversion, solar cells, and optoelectronic devices.

12.
Phys Chem Chem Phys ; 24(6): 3770-3779, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35081609

RESUMO

Recently, metal oxyhalides have been broadly studied due to their hierarchical structures and promising functionalities. Herein, a thorough study of newly modeled monolayers ScXY (X = S and Se; Y = Cl and Br), a class of derivates of ScOBr monolayers, was conducted using first-principles calculations. We theoretically confirm that these ScXY monolayers are mechanically, dynamically, and thermally stable. Young's modulus and Poisson's ratio calculated for all these ScXY monolayers obviously exhibit anisotropic properties. All these monolayers are indirect-gap semiconductors with bandgaps in the range of 2.35-3.18 eV, and their conduction band minimum (CBM) and valence band maximum (VBM) can straddle the reduction and oxidation potential of water very well, respectively. Particularly, ScSeCl and ScSeBr monolayers have the most propitious bandgaps and band alignments to be used as promising photocatalysts, and the predicted carrier mobility is much larger than that of many other two-dimensional materials. Moreover, the predicted anisotropic carrier mobilities and indirect bandgaps will diminish the recombination and facilitate the migration of photo-generated electron and hole pairs. Moreover, biaxial strain (-5% to 5%) effects on the band alignments and bandgaps are discussed. Our findings highlight that ScSeCl and ScSeBr monolayers are envisioned to act as promising photocatalytic and photoelectronic materials with anisotropic ultrahigh carrier mobilities.

13.
Phys Rev Lett ; 126(7): 075701, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666443

RESUMO

Shock reverberation compression experiments on dense gaseous deuterium-helium mixtures are carried out to provide thermodynamic parameters relevant to the conditions in planetary interiors. The multishock pressures are determined up to 120 GPa and reshock temperatures to 7400 K. Furthermore, the unique compression path from shock-adiabatic to quasi-isentropic compressions enables a direct estimation of the high-pressure sound velocities in the unexplored range of 50-120 GPa. The equation of state and sound velocity provide particular dual perspectives to validate the theoretical models. Our experimental data are found to agree with several equation of state models widely used in astrophysics within the probed pressure range. The current data improve the experimental constraints on sound velocities in the Jovian insulating-to-metallic transition layer.

14.
Nanotechnology ; 32(45)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34348253

RESUMO

The design and search for efficient thermoelectric materials that can directly convert waste heat into electricity have been of great interest in recent years since they have practical applications in overcoming the challenges of global warming and the energy crisis. In this work, two new two-dimensional 1T-phase group-VI binary compounds Se2Te and SeTe2with outstanding thermoelectric performances are predicted using first-principles calculations combined with Boltzmann transport theory. The dynamic stability is confirmed based on phonon dispersion. It is found that the spin-orbit coupling effect has a significant impact on the band structure of SeTe2, and induces a transformation from indirect to direct band gap. The electronic and phononic transport properties of the Se2Te and SeTe2monolayer are calculated and discussed. High carrier mobility (up to 3744.321 and 2295.413 cm2V-1S-1for electron and hole, respectively) is exhibited, suggesting great applications in nanoelectronic devices. Furthermore, the maximum thermoelectric figure of meritzTof SeTe2for n-type and p-type is 2.88, 1.99 and 5.94, 3.60 at 300 K and 600 K, respectively, which is larger than that of most reported 2D thermoelectric materials. The surprising thermoelectric properties arise from the ultralow lattice thermal conductivitykl(0.25 and 1.89 W m-1K-1for SeTe2and Se2Te at 300 K), and the origin of ultralow lattice thermal conductivity is revealed. The present results suggest that 1T-phase Se2Te and SeTe2monolayer are promising candidates for thermoelectric applications.

15.
Phys Chem Chem Phys ; 21(10): 5689-5694, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801076

RESUMO

A sizable band gap is crucial for the applications of topological insulators at room temperature. By first-principles calculations, we found that oxygen-functionalized TlTe buckled honeycomb, namely TlTeO, possessed quantum spin Hall (QSH) state with a sizable band gap of 0.17 eV, which owns potential applications at the room temperature. The QSH phase of TlTeO arose from the SOC-induced p-p band gap opening. In addition, the QSH phase was further confirmed by the topological invariant Z2 and gapless edge state in the bulk gap. Significantly, the QSH phase is robustly against the external strain and possesses more than 75% oxygen coverage, making the QSH effect of TlTeO easy to be achieved experimentally. Thus, the oxygen-functionalized TlTeO film is a fine candidate material for the topological device design and fabrication.

16.
Phys Chem Chem Phys ; 21(27): 15167-15176, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246206

RESUMO

Weyl semimetal, a newly developed thermoelectric material, has aroused much interest due to its extraordinary transport properties. In this work, the thermoelectric transport properties of NbX (X = P and As), a prototypical Weyl semimetal, are investigated using the first-principles calculations together with Boltzmann transport theory. The calculated room-temperature lattice thermal conductivities along the a and c directions are 2.0 W mK-1 and 0.6 W mK-1 for NbP and 1.4 W mK-1 and 0.4 W mK-1 for NbAs, respectively. The low thermal conductivities may be useful in the thermoelectric applications. It is found that the acoustic branches have obvious contribution to the total lattice thermal conductivity, and the size dependence of the thermal conductivities can provide guidance for designing thermoelectric nanostructures. Our results show that the anisotropic structures of these compounds bring about the anisotropy of transport coefficients along the a and c directions, and the preferred direction is the c direction in thermoelectric applications. Moreover, NbP and NbAs show high ZT values of 0.82 and 0.50 along the c direction for p-type at an optimal carrier concentration, indicating that they are potential thermoelectric materials.

17.
Inorg Chem ; 57(8): 4441-4447, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29611705

RESUMO

We perform detailed investigations on the electronic and magnetic properties in double perovskites Ba2MOsO6 (M = K, Ca, and Sc), with formal valences of Os7+ (5d1), Os6+ (5d2), and Os5+ (5d3), respectively, using first-principles calculations. To understand the effects of Coulomb interaction ( U), spin-orbit coupling (SOC), and magnetic order, we carry out different calculations within density functional theory. It is shown that SOC and U energy not only provide the magneto crystalline anisotropies but also significantly affect the size of the local moments and the magnetic structures in these compounds. The electronic configuration of 5d1 and 5d2 of Os in Ba2MOsO6 (M = K and Ca) have the metal-insulator transition (MIT) as the direction of the local moment changes, while the electronic structure of half-filled 5d3 orbitals of Os in Ba2ScOsO6 is insulator, independent of the local moment direction. Our results indicate that both SOC and U interactions are necessary in enlarging the band gaps and putting these compounds into the MIT correlated insulators.

18.
Phys Chem Chem Phys ; 20(17): 12138-12148, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682637

RESUMO

The quantum anomalous Hall (QAH) effect is superior to the quantum spin Hall (QSH) effect, which can avoid the inelastic scattering of two edge electrons located on one side of a topological nontrivial material, and thus it has attracted both theoretical and experimental interest. Here, we systematically investigate the lattice structures, and electronic and magnetic properties of hydrogenated arsenene decorated with certain transition metals (Cr, Mo and Cu) based on density-functional theory. A unique QAH effect in Mo@AsH is predicted, whose Chern number (C = 1) indicates only one chiral edge channel located on its one side. Then, we prove that this QAH effect realization is closely related with band inversion, which is the competitive result between its spin-orbit coupling (SOC) strength and exchange field. The quantum state of Mo@AsH can also be tuned by an external strain, similar to SOC, and it is noted that its increased topological gap of about 35 meV under 5.0% tensile strain, is large enough to realize the QAH effect at room-temperature. Additionally, the quantum valley Hall effect in Cu@AsH contributed by the inequality of AB sublattices is also found. Our results reveal the physical mechanism to realize the QAH effect in TM@AsH and provide a platform for electrically controllable topological states, which are highly desirable for nanoelectronics and spintronics.

19.
Phys Chem Chem Phys ; 20(25): 17253-17261, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29901061

RESUMO

Employing molecular dynamic (MD) simulations and solid-state density functional theory (DFT), we carried out thorough studies to understand the interaction-structure-property interrelationship of the co-crystal explosive 1 : 1 CL-20 : TNT. Our results revealed that the co-crystallization of CL-20 and TNT molecules enhances the intermolecular binding forces, where the main driving force for the formation of the co-crystal CL-20/TNT comes from HO and CO interactions, while OO contributes to the co-crystal stabilization. Furthermore, we also used the concept of atoms in molecule (AIM) and the reduced density gradient (RDG) to describe the spatial arrangements and interactions of co-crystal compositions, which showed that although the adjoining TNT molecules possess two symmetry groups and the adjoining CL-20 molecules possess the same symmetry group, their interactions are not identical. These spatial arrangements provide a good reference to the formation of other co-crystals. When the obtained structural and detonation properties of the three crystals were compared, it was observed that the CL-20/TNT co-crystal achieved the desirable properties of explosives, i.e., low-sensitivity and high-energy, possessing the advantages of both CL-20 and TNT explosives.

20.
Phys Chem Chem Phys ; 18(43): 30061-30067, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27775115

RESUMO

Chemical functionalization is an effective means of tuning the electronic and crystal structure of a two-dimensional material, but very little is known regarding the correlation between thermal transport and chemical functionalization. Based on the first-principles calculation and an iterative solution of the Boltzmann transport equation, we find that antimonene is a potential excellent thermal material with relatively low thermal conductivity k, and furthermore, chemical functionalization can make this value of k decrease greatly. More interestingly, the origin of the reduction in k is not the anharmonic interaction but the harmonic interaction from the depressed phonon spectrum mechanism, and for some chemical functional atom in halogen, flat modes appearing in the low frequency range play also a key factor in the reduction of k by significantly increasing the three-phonon scattering channels. Our work provides a new view to adjust thermal transport which can benefit thermal material design, and analyzes the reduction mechanism in k from the chemical functionalization of antimonene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA