RESUMO
Evolutionary pressures sculpt population genetics, whereas immune adaptation fortifies humans against life-threatening organisms. How the evolution of selective genetic variation in adaptive immune receptors orchestrates the adaptation of human populations to contextual perturbations remains elusive. Here, we show that the G396R coding variant within the human immunoglobulin G1 (IgG1) heavy chain presents a concentrated prevalence in Southeast Asian populations. We uncovered a 190-kb genomic linkage disequilibrium block peaked in close proximity to this variant, suggestive of potential Darwinian selection. This variant confers heightened immune resilience against various pathogens and viper toxins in mice. Mechanistic studies involving severe acute respiratory syndrome coronavirus 2 infection and vaccinated individuals reveal that this variant enhances pathogen-specific IgG1+ memory B cell activation and antibody production. This G396R variant may have arisen on a Neanderthal haplotype background. These findings underscore the importance of an IGHG1 variant in reinforcing IgG1 antibody responses against life-threatening organisms, unraveling the intricate interplay between human evolution and immune adaptation.
Assuntos
COVID-19 , Imunoglobulina G , Cadeias Pesadas de Imunoglobulinas , SARS-CoV-2 , Humanos , Animais , Imunoglobulina G/imunologia , COVID-19/imunologia , COVID-19/genética , SARS-CoV-2/imunologia , Camundongos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Desequilíbrio de Ligação , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Haplótipos , Células B de Memória/imunologia , Feminino , Variação Genética , MasculinoRESUMO
Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.
Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Colite/metabolismo , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Lisossomos/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Th17/metabolismoRESUMO
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
RESUMO
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
Assuntos
Velocidade do Fluxo Sanguíneo , Encéfalo , Circulação Cerebrovascular , Ultrassonografia , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Erros Médicos , Razão Sinal-Ruído , Pele , Crânio , Sonolência/fisiologia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , AdultoRESUMO
Continuous imaging of cardiac functions is highly desirable for the assessment of long-term cardiovascular health, detection of acute cardiac dysfunction and clinical management of critically ill or surgical patients1-4. However, conventional non-invasive approaches to image the cardiac function cannot provide continuous measurements owing to device bulkiness5-11, and existing wearable cardiac devices can only capture signals on the skin12-16. Here we report a wearable ultrasonic device for continuous, real-time and direct cardiac function assessment. We introduce innovations in device design and material fabrication that improve the mechanical coupling between the device and human skin, allowing the left ventricle to be examined from different views during motion. We also develop a deep learning model that automatically extracts the left ventricular volume from the continuous image recording, yielding waveforms of key cardiac performance indices such as stroke volume, cardiac output and ejection fraction. This technology enables dynamic wearable monitoring of cardiac performance with substantially improved accuracy in various environments.
Assuntos
Ecocardiografia , Desenho de Equipamento , Coração , Dispositivos Eletrônicos Vestíveis , Humanos , Débito Cardíaco , Ecocardiografia/instrumentação , Ecocardiografia/normas , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Volume Sistólico , Dispositivos Eletrônicos Vestíveis/normas , PeleRESUMO
Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.
Assuntos
Akkermansia , Homeostase , Imunidade , Fosfatidiletanolaminas , Akkermansia/química , Akkermansia/citologia , Akkermansia/imunologia , Membrana Celular/química , Membrana Celular/imunologia , Citocinas/imunologia , Homeostase/imunologia , Humanos , Mediadores da Inflamação/síntese química , Mediadores da Inflamação/química , Mediadores da Inflamação/imunologia , Fosfatidiletanolaminas/síntese química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/imunologia , Relação Estrutura-Atividade , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/imunologiaRESUMO
Quasars, which are exceptionally bright objects at the centres (or nuclei) of galaxies, are thought to be produced through the accretion of gas into disks surrounding supermassive black holes1-3. There is observational evidence at galactic and circumnuclear scales4 that gas flows inwards towards accretion disks around black holes, and such an inflow has been measured at the scale of the dusty torus that surrounds the central accretion disk5. At even smaller scales, inflows close to an accretion disk have been suggested to explain the results of recent modelling of the response of gaseous broad emission lines to continuum variations6,7. However, unambiguous observations of inflows that actually reach accretion disks have been elusive. Here we report the detection of redshifted broad absorption lines of hydrogen and helium atoms in a sample of quasars. The lines show broad ranges of Doppler velocities that extend continuously from zero to redshifts as high as about 5,000 kilometres per second. We interpret this as the inward motion of gases at velocities comparable to freefall speeds close to the black hole, constraining the fastest infalling gas to within 10,000 gravitational radii of the black hole (the gravitational radius being the gravitational constant multiplied by the object mass, divided by the speed of light squared). Extensive photoionization modelling yields a characteristic radial distance of the inflow of approximately 1,000 gravitational radii, possibly overlapping with the outer accretion disk.
RESUMO
Chimeric antigen receptor (CAR) T cells are activated to trigger the lytic machinery after antigen engagement, and this has been successfully applied clinically as therapy. The mechanism by which antigen binding leads to the initiation of CAR signaling remains poorly understood. Here, we used a set of short double-stranded DNA (dsDNA) tethers with mechanical forces ranging from â¼12 to â¼51 pN to manipulate the mechanical force of antigen tether and decouple the microclustering and signaling events. Our results revealed that antigen-binding-induced CAR microclustering and signaling are mechanical force dependent. Additionally, the mechanical force delivered to the antigen tether by the CAR for microclustering is generated by autonomous cell contractility. Mechanistically, the mechanical-force-induced strong adhesion and CAR diffusion confinement led to CAR microclustering. Moreover, cytotoxicity may have a lower mechanical force threshold than cytokine generation. Collectively, these results support a model of mechanical-force-induced CAR microclustering for signaling.
Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Antígenos , Imunoterapia Adotiva/métodosRESUMO
Dry age-related macular degeneration (AMD) and recessive Stargardt's disease (STGD1) lead to irreversible blindness in humans. The accumulation of all-trans-retinal (atRAL) induced by chaos in visual cycle is closely associated with retinal atrophy in dry AMD and STGD1 but its critical downstream signaling molecules remain ambiguous. Here, we reported that activation of eukaryotic translation initiation factor 2α (eIF2α) by atRAL promoted retinal degeneration and photoreceptor loss through activating c-Jun N-terminal kinase (JNK) signaling-dependent apoptosis and gasdermin E (GSDME)-mediated pyroptosis. We determined that eIF2α activation by atRAL in photoreceptor cells resulted from endoplasmic reticulum homeostasis disruption caused at least in part by reactive oxygen species production, and it activated JNK signaling independent of and dependent on activating transcription factor 4 and the activating transcription factor 4/transcription factor C/EBP homologous protein (CHOP) axis. CHOP overexpression induced apoptosis of atRAL-loaded photoreceptor cells through activating JNK signaling rather than inhibiting the expression of antiapoptotic gene Bcl2. JNK activation by eIF2α facilitated photoreceptor cell apoptosis caused by atRAL via caspase-3 activation and DNA damage. Additionally, we demonstrated that eIF2α was activated in neural retina of light-exposed Abca4-/-Rdh8-/- mice, a model that shows severe defects in atRAL clearance and displays primary features of human dry AMD and STGD1. Of note, inhibition of eIF2α activation by salubrinal effectively ameliorated retinal degeneration and photoreceptor apoptosis in Abca4-/-Rdh8-/- mice upon light exposure. The results of this study suggest that eIF2α is an important target to develop drug therapies for the treatment of dry AMD and STGD1.
Assuntos
Fator de Iniciação 2 em Eucariotos , Degeneração Retiniana , Retinaldeído , Doença de Stargardt , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Doença de Stargardt/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismoRESUMO
Congenital cataract is one of the most common causes of childhood blindness, typically resulting from genetic mutations. Over a hundred gene mutations associated with congenital cataract have been identified, with approximately half occurring in the Crystallin genes. In this study, we identified a novel γA-crystallin pathogenic mutation (c. 29G > C, p. Arg10Pro (R10P)), from a four-generation Chinese family with congenital cataract, and investigated its potential molecular mechanisms underlying congenital cataracts. We compared the protein structure and stability of purified the wild type (WT) and R10P under physiological conditions and environmental stresses (UV irradiation, pH imbalance, heat shock, and chemical denaturation) using spectroscopic experiments, SEC analysis, and the UNcle protein analysis system. The results demonstrate that γA-R10P has no significant impact on the structure of γA-crystallin on normal condition. However, it is more sensitive to UV irradiation at high concentrations and prone to aggregation at high temperatures. Therefore, our study reveals the crucial role of the conserved site mutation R10P in maintaining protein structure and stability, providing new insights into the mechanisms of cataract formation.
RESUMO
OBJECTIVES: In the complex panorama of autoimmune diseases, the characterisation of pivotal contributing autoantibodies that are involved in disease progression remains challenging. This study aimed to employ a global antibody profiling strategy to identify novel antibodies and investigate their association with systemic sclerosis (SSc). METHODS: We implemented this strategy by conducting immunoprecipitation (IP) following on-bead digestion with the sera of patients with SSc or healthy donors, using antigen pools derived from cell lysates. The enriched antigen-antibody complex was proceeded with mass spectrometry (MS)-based quantitative proteomics and over-represented by bioinformatics analysis. The candidate antibodies were then orthogonally validated in two independent groups of patients with SSc. Mice were immunised with the target antigen, which was subsequently evaluated by histological examination and RNA sequencing. RESULTS: The IP-MS analysis, followed by validation in patients with SSc, revealed a significant elevation in anti-PRMT5 antibodies among patients with SSc. These antibodies exhibited robust diagnostic accuracy in distinguishing SSc from healthy controls and other autoimmune conditions, including systemic lupus erythematosus and Sjögren's syndrome, with an area under the curve ranging from 0.900 to 0.988. The elevation of anti-PRMT5 antibodies was verified in a subsequent independent group with SSc using an additional method, microarray. Notably, 31.11% of patients with SSc exhibited seropositivity for anti-PRMT5 antibodies. Furthermore, the titres of anti-PRMT5 antibodies demonstrated a correlation with the progression or regression trajectory in SSc. PRMT5 immunisation displayed significant inflammation and fibrosis in both the skin and lungs of mice. This was concomitant with the upregulation of multiple proinflammatory and profibrotic pathways, thereby underscoring a potentially pivotal role of anti-PRMT5 antibodies in SSc. CONCLUSIONS: This study has identified anti-PRMT5 antibodies as a novel biomarker for SSc.
Assuntos
Autoanticorpos , Biomarcadores , Proteína-Arginina N-Metiltransferases , Escleroderma Sistêmico , Escleroderma Sistêmico/imunologia , Humanos , Biomarcadores/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Proteína-Arginina N-Metiltransferases/imunologia , Animais , Camundongos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto , Lúpus Eritematoso Sistêmico/imunologia , Imunoprecipitação/métodos , Proteômica/métodosRESUMO
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) within cells proves exceptionally challenging to eradicate using conventional antimicrobials, resulting in recurring infections and heightened resistance. Herein, we reported an innovative mannosylated lipid-coated photodynamic/photothermal calcium phosphate nanoparticle (MAN-LCaP@ICG) for eradicating intracellular MRSA. The MAN-LCaP functioned as the vehicle for drug delivery, exhibiting preferential uptake by macrophages and facilitating the transport of ICG to intracellular pathogens. The MAN units integrated into MAN-LCaP@ICG could promote binding with MAN residuals on macrophage cells, as evidenced by cellular uptake assays using fluorescence microscopy and flow cytometry. Following its targeted accumulation, MAN-LCaP@ICG could enter into the cytoplasm and efficiently eradicate intracellular MRSA by a combination of the lysosome escape capability of CaP and the photodynamic and photothermal therapeutic effects of ICG. Furthermore, MAN-LCaP@ICG could kill MRSA more effectively than LCaP@ICG without MAN units or free ICG in a mouse peritoneal infection model. Therefore, MAN-LCaP@ICG provided a promising direction for human clinical application in combating intracellular infections.
RESUMO
AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.
Assuntos
Alcaloides , Apolipoproteínas E , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos Sprague-Dawley , Sesquiterpenos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Animais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Masculino , Humanos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apolipoproteínas E/genética , Ratos , Camundongos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Transcriptoma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Farmacologia em Rede , Metabolômica , Pessoa de Meia-Idade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , FemininoRESUMO
Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.
Assuntos
Proteína ADAMTS4 , Apoptose , Fibroblastos , Inflamação , Vírus da Influenza A Subtipo H1N1 , Pulmão , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/virologia , Fibroblastos/metabolismo , Humanos , Pulmão/virologia , Pulmão/patologia , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Inflamação/genética , Sobrevivência Celular , Replicação Viral , Influenza Humana/virologia , Influenza Humana/genética , Influenza Humana/metabolismo , Linhagem CelularRESUMO
BACKGROUND: There is little evidence to comprehensively summarize the adverse events (AEs) profile of intermittent fasting (IF) despite its widespread use in patients with overweight or obesity. METHODS: We searched the main electronic databases and registry websites to identify eligible randomized controlled trials (RCTs) comparing IF versus control groups. A direct meta-analysis using a fixed-effect model was conducted to pool the risk differences regarding common AEs and dropouts. Study quality was assessed by using the Jadad scale. Pre-specified subgroup and sensitivity analyses were conducted to explore potential heterogeneity. RESULTS: A total of 15 RCTs involving 1,365 adult individuals were included. Findings did not show a significant difference between IF and Control in risk rate of fatigue [0%, 95% confidence interval (CI), -1% to 2%; P = 0.61], headache [0%, 95%CI: -1% to 2%; P = 0.86] and dropout [1%, 95%CI: -2% to 4%; P = 0.51]. However, a numerically higher risk of dizziness was noted among the IF alone subgroup with non-early time restricted eating [3%, 95%CI: -0% to 6%; P = 0.08]. CONCLUSIONS: This meta-analysis suggested that IF was not associated with a greater risk of AEs in adult patients affected by overweight or obesity. Additional large-scale RCTs stratified by key confounders and designed to evaluate the long-term effects of various IF regimens are needed to ascertain these AEs profile.
Assuntos
Jejum Intermitente , Obesidade , Sobrepeso , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Humanos , Tontura , Fadiga , Cefaleia , Jejum Intermitente/efeitos adversosRESUMO
OBJECTIVES: Aldosterone-to-renin ratio (ARR) based screening is the first step in the diagnosis of primary aldosteronism (PA). However, the guideline-recommended ARR cutoff covers a wide range, from the equivalent of 1.3 to 4.9 ng·dl-1/mIUâl-1. We aimed to optimize the ARR cutoff for PA screening based on the risk of cardiovascular diseases (CVD). METHODS: Longitudinally, we included hypertensive participants from the Framingham Offspring Study (FOS) who attended the sixth examination cycle and followed up until 2014. At baseline (1995-1998), we used circulating concentrations of aldosterone and renin to calculate ARR (unit: ng·dl-1/mIUâl-1) among 1,433 subjects who were free of CVD. We used spline regression to calculate the ARR threshold based on the incident CVD. We used cross-sectional data from the Chongqing Primary Aldosteronism Study (CONPASS) to explore whether the ARR cutoff selected from FOS is applicable to PA screening. RESULTS: In FOS, CVD risk increased with an increasing ARR until a peak of ARR 1.0, followed by a plateau in CVD risk (hazard ratio 1.49, 95%CI 1.19-1.86). In CONPASS, when compared to essential hypertension with ARR < 1.0, PA with ARR ≥ 1.0 carried a higher CVD risk (odds ratio 2.24, 95%CI 1.41-3.55), while essential hypertension with ARR ≥ 1.0 had an unchanged CVD risk (1.02, 0.62-1.68). Setting ARR cutoff at 2.4 ~ 4.9, 10% ~30% of PA subjects would be unrecognized although they carried a 2.45 ~ 2.58-fold higher CVD risk than essential hypertension. CONCLUSIONS: The CVD risk-based optimal ARR cutoff is 1.0 ng·dl-1/mIUâl-1 for PA screening. The current guideline-recommended ARR cutoff may miss patients with PA and high CVD risk. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT03224312).
Assuntos
Doenças Cardiovasculares , Hiperaldosteronismo , Humanos , Aldosterona , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Estudos Transversais , Hipertensão Essencial , Fatores de Risco de Doenças Cardíacas , Hiperaldosteronismo/complicações , Hiperaldosteronismo/diagnóstico , Renina , Fatores de RiscoRESUMO
BACKGROUND: The escalation of viruses over the past decade has highlighted the need to determine their respective hosts, particularly for emerging ones that pose a potential menace to the welfare of both human and animal life. Yet, the traditional means of ascertaining the host range of viruses, which involves field surveillance and laboratory experiments, is a laborious and demanding undertaking. A computational tool with the capability to reliably predict host ranges for novel viruses can provide timely responses in the prevention and control of emerging infectious diseases. The intricate nature of viral-host prediction involves issues such as data imbalance and deficiency. Therefore, developing highly accurate computational tools capable of predicting virus-host associations is a challenging and pressing demand. RESULTS: To overcome the challenges of virus-host prediction, we present HostNet, a deep learning framework that utilizes a Transformer-CNN-BiGRU architecture and two enhanced sequence representation modules. The first module, k-mer to vector, pre-trains a background vector representation of k-mers from a broad range of virus sequences to address the issue of data deficiency. The second module, an adaptive sliding window, truncates virus sequences of various lengths to create a uniform number of informative and distinct samples for each sequence to address the issue of data imbalance. We assess HostNet's performance on a benchmark dataset of "Rabies lyssavirus" and an in-house dataset of "Flavivirus". Our results show that HostNet surpasses the state-of-the-art deep learning-based method in host-prediction accuracies and F1 score. The enhanced sequence representation modules, significantly improve HostNet's training generalization, performance in challenging classes, and stability. CONCLUSION: HostNet is a promising framework for predicting virus hosts from genomic sequences, addressing challenges posed by sparse and varying-length virus sequence data. Our results demonstrate its potential as a valuable tool for virus-host prediction in various biological contexts. Virus-host prediction based on genomic sequences using deep neural networks is a promising approach to identifying their potential hosts accurately and efficiently, with significant impacts on public health, disease prevention, and vaccine development.
Assuntos
Redes Neurais de Computação , Vírus , Animais , Humanos , Vírus/genética , Genômica , Genoma ViralRESUMO
Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.
Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terbinafina/farmacologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Transdução de Sinais , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Proliferação de Células , Linhagem Celular TumoralRESUMO
Differentiating Streptococcus pneumoniae among nonpneumococcal viridans group streptococci (VGS) is challenging in conventional laboratories. Therefore, we aimed to evaluate the performance of the latest Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system in identifying VGS by comparing the results to those of the specific gene sequencing approach. Clinical isolates were initially identified using the BD Phoenix system to identify Streptococcus species. The optochin test was used to distinguish nonpneumococcal VGS from S. pneumoniae. The species of individual reference strains and clinical isolates were determined by comparing the sequences of the 16S rDNA, gyrB, sodA, groESL, or coaE genes with those in the GenBank sequence databases. We evaluated the performance of the Bruker Biotyper MALDI-TOF MS in VGS identification using two different machines with three databases. We collected a total of 103 nonpneumococcal VGS and 29 S. pneumoniae blood isolates at a medical center in northern Taiwan. Among these isolates, only seven could not be identified at the species level by the specific gene sequencing approach. We found that none of the nonpneumococcal VGS isolates were misidentified as pneumococci by the latest Biotyper system, and vice versa. However, certain strains, especially those in the mitis and bovis groups, could still not be correctly identified. The latest Bruker Biotyper 4.1 (DB_10833) showed significant improvement in identifying VGS strains. However, a specific gene sequencing test is still needed to precisely differentiate the species of strains in the mitis and bovis groups.