Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Angew Chem Int Ed Engl ; 62(10): e202218510, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625681

RESUMO

Generating FeIV =O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV =O generation pathway and oxidation behavior remain obscure. Employing an Fe-N-C catalyst with a typical Fe-N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV =O is mediated by an Fe-N-C-PMS* complex-a well-recognized nonradical species for induction of electron-transfer oxidation-and we determined that adjacent Fe sites with a specific Fe1 -Fe1 distance are required. After the Fe atoms with an Fe1 -Fe1 distance <4 Šare PMS-saturated, Fe-N-C-PMS* formed on Fe sites with an Fe1 -Fe1 distance of 4-5 Šcan coordinate with the adjacent FeII -N4 , forming an inter-complex with enhanced charge transfer to produce FeIV =O. FeIV =O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.

2.
Sci Total Environ ; 937: 173141, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38761927

RESUMO

This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.


Assuntos
Biofilmes , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 402: 130829, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734261

RESUMO

Most marine microalgae are typically cultivated in coastal areas due to challenges in inland cultivation. In this 185 days experiment, Nannochloropsis oceanica was semi-continuously cultivated inland using different photobioreactors (PBRs). The newly designed 700-liter (L) PBR exhibited tolerance to seasonal changes compared to the 150-L PBRs. The innovative in-situ oxygen release rate (ORR) measurement method results indicated that ORR was influenced by light intensity and temperature. The optimal temperature range for N. oceanica growth was 14-25 â„ƒ, demonstrated cold tolerance and lipid accumulation at low temperatures. The maximum lipid content in 700-L and 150-L PBRs was 29 % and 28 %, respectively. Based on the average biomass productivity, the price of N. oceanica was $11.89 kg-1 (or $3.35 kg-1 based on maximum biomass productivity), which is cheaper than the current market price of $20.19 kg-1. From results, smaller PBRs at the same hydro electricity price are more cost-effective.


Assuntos
Biomassa , Microalgas , Fotobiorreatores , Estramenópilas , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/metabolismo , Temperatura , Oxigênio , Luz
4.
Sci Total Environ ; 903: 166428, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619727

RESUMO

Bioproduction is considered a promising alternative way of obtaining useful and green chemicals. However, the downstream process of biomolecules has been one of the major difficulties in upscaling the application of bioproducts due to the high purification cost. Acid precipitation is the most common method for purifying biosurfactants from the fermentation broth with high purity. However, the use of strong acids and organic solvents in solvent extraction has limited its application. Hence, in this study, a new strain of Bacillus velezensis PhCL was isolated from phenolic waste, and its production of amylase had been optimized via response surface methodology. After that, amylase and biosurfactant were purified by sequential ammonium sulfate precipitation and the result suggested that even though the purified crude biosurfactant had a lower purification fold compared to the acid precipitation, the yield was higher and both enzymes and biosurfactant also could be recovered for lowering the purification cost. Moreover, the purified amylase and crude biosurfactant were characterized and the results suggested that the purified crude biosurfactant would have a higher emulsion activity and petroleum hydrocarbon removal rate compared to traditional surfactants. This study provided another approach for purifying bioactive compounds including enzymes and biosurfactants from the same fermentation broth and further explored the potential of the crude purified biosurfactant in the bioremediation of polycyclic aromatic hydrocarbons and petroleum hydrocarbons.

5.
Microb Physiol ; 33(1): 36-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944321

RESUMO

Soil bacteria participate in self-immobilization processes for survival, persistence, and production of virulence factors in some niches or hosts through their capacities for autoaggregation, cell surface hydrophobicity, biofilm formation, and antibiotic and heavy metal resistance. This study investigated potential virulence, antibiotic and heavy metal resistance, solvent adhesion, and biofilm-forming capabilities of six cellulolytic bacteria isolated from soil samples: Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Strains were subjected to phenotypic methods, including heavy metal and antibiotic susceptibility and virulence factors (protease, lipase, capsule production, autoaggregation, hydrophobicity, and biofilm formation). The effect of ciprofloxacin was also investigated on bacterial susceptibility over time, cell membrane, and biofilm formation. Strains MKAL2, MKAL5, and MKAL6 exhibited protease and lipase activities, while only MKAL6 produced capsules. All strains were capable of aggregating, forming biofilm, and adhering to solvents. Strains tolerated high amounts of chromium, lead, zinc, nickel, and manganese and were resistant to lincomycin. Ciprofloxacin exhibited bactericidal activity against these strains. Although the phenotypic evaluation of virulence factors of bacteria can indicate their pathogenic nature, an in-depth genetic study of virulence, antibiotic and heavy metal resistance genes is required.


Assuntos
Antibacterianos , Metais Pesados , Virulência , Antibacterianos/farmacologia , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Metais Pesados/metabolismo , Bactérias/genética , Biofilmes , Fatores de Virulência/genética , Fatores de Virulência/farmacologia , Ciprofloxacina/farmacologia , Peptídeo Hidrolases/farmacologia , Lipase/farmacologia
6.
Microb Physiol ; 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417846

RESUMO

The cultural parameters of Streptomyces sp. for pectinase production were optimized using the Box-Behnken design. The maximum pectinase production was obtained after 58 hours at 35℃ and pH 7 upon submerged fermentation in yeast extract-containing media. The enzymes were partially purified with acetone precipitation and the analysis by SDS-PAGE and zymogram revealed that Streptomyces sp. produced two pectinases with molecular weights of about 25 and 75 kDa. The pectinase activity was detected in a wide range of temperatures (30℃ to 80℃) and pH (3 to 9) with maximum pectinase activities observed at 70℃ and pHs 5 and 9. The enzymes retained about 30 to 40% of their activities even after incubating the enzyme at different temperatures for 120 mins. The pectinase activities of Streptomyces sp. were enhanced in the media containing 1.5% pectin, 1% casein as a nitrogen source, 0.5 mM MgSO4, and 5 mM NaCl. Further, the addition of Tween-20, amino acids, and vitamins to the media also enhanced the pectinase activity. Moreover, the bacterium illustrated the ability to decolorize crystal violet dye efficiently. The decolorization rate ranged from 39.29 to 53.75% showing the highest bacterial decolorization in the media containing 2mg/mL crystal violet at 144 hours. Therefore, the bacterium has the potential in treating wastewater produced by industries like textile industries.

7.
Water Res ; 227: 119346, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395567

RESUMO

Peracetic-acid-based advanced oxidation processes (PAA-AOPs) on metal-free catalysts have emerged as charming strategies for water contaminant removal. However, the involved reactive species and their corresponding active sites are ambiguous. Herein, using carbon nanotube (CNT) as a model carbocatalyst, we demonstrated that, under neutral conditions, the CNT-PAA* complex was the dominant reactive species to oxidize phenolic compounds via electron-transfer process (ETP), whereas the surface-bound hydroxyl radicals (·OHsurface) played a minor role on the basis of quenching and electrochemical tests as well as Raman spectroscopy. More importantly, the experimental and density functional theory (DFT) calculation results collaboratively proved that the active site for ETP was the sp2-hybridized carbon on the CNT bulk, while that for radical generation was the edge-located hydroxyl group (C-OH), which lowered the energy barrier for cleaving the O-O bond in CNT-PAA* complex. We further discerned the oxidation kinetic constants (koxid) of different pollutants from the apparent kinetic constants in CNT/PAA system. The significant negative linear correlation between lnkoxid and half-wave potential of phenolic compounds suggests that the pollutants with a lower one-electron oxidation potential (i.e., stronger electron-donating ability) are more easily oxidized. Overall, this study scrutinizes the hybrid radical and non-radical mechanism and the corresponding active sites of the CNT/PAA system, providing insights into the application of PAA-AOPs and the development of ETP in the remediation of emerging organic pollutants.


Assuntos
Poluentes Ambientais , Nanotubos de Carbono , Ácido Peracético , Domínio Catalítico , Radical Hidroxila/química , Cinética , Nanotubos de Carbono/química , Fenóis/química
8.
Appl Biochem Biotechnol ; 194(11): 5060-5082, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35687308

RESUMO

The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.


Assuntos
Bacillus , Celulase , Celulases , Celulase/química , Celulose , Solo , Carboximetilcelulose Sódica , Ágar , Vermelho Congo , Nitrogênio , Temperatura , Carbono , Glucose , Sacarose , Gelatinases , Concentração de Íons de Hidrogênio
9.
Bioresour Bioprocess ; 8(1): 92, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722121

RESUMO

The biological pretreatment for the enzymatic hydrolysis of lignocellulosic biomasses depends exclusively on the effective pretreatment process. Herein, we report a significant enhancement of enzymatic saccharification obtained with corn stover using a bacterial strain Bacillus sp. P3. The hemicellulose removal from corn stover by the strain Bacillus sp. P3 was evaluated for enhancing subsequent enzymatic hydrolysis. Therefore, our study revealed that an alkaline-resistant xylanase as well as other enzymes produced by Bacillus sp. P3 in fermentation broth led to a substantially enhanced hemicellulose removal rate from corn stover within pH 9.36-9.68. However, after a 20-day pretreatment of corn stover by the strain P3, the glucan content was increased by 51% and the xylan content was decreased by 35%. After 72 h of saccharification using 20 U/g of commercial cellulase, the yield of reducing sugar released from 20-day pretreated corn stover was increased by 56% in comparison to the untreated corn stover. Therefore, the use of the strain P3 could be a promising approach to pretreat corn stover for enhancing the enzymatic hydrolysis process of industrial bioenergy productions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40643-021-00445-8.

10.
Microb Biotechnol ; 12(4): 787-798, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31141846

RESUMO

Biomass recalcitrance is still a main challenge for the production of biofuels and high-value products. Here, an alternative Miscanthus pretreatment method by using lignin-degrading bacteria was developed. Six efficient Miscanthus-degrading bacteria were first cultured to produce laccase by using 0.5% Miscanthus biomass as carbon source. After 1-5 days of incubation, the maximum laccase activities induced by Miscanthus in the six strains were ranged from 103 to 8091 U l-1 . Then, the crude enzymes were directly diluted by equal volumes of citrate buffer and added Miscanthus biomass to a solid concentration at 4% (w/v). The results showed that all bacterial pretreatments significantly decreased the lignin content, especially in the presence of two laccase mediators (ABTS and HBT). The lignin removal directly correlated with increases in total sugar and glucose yields after enzymatic hydrolysis. When ABTS was used as a mediator, the best lignin-degrading bacteria (Pseudomonas sp. AS1) can remove up to 50.1% lignin of Miscanthus by obtaining 2.2-fold glucose yield, compared with that of untreated biomass. Therefore, this study provided an effective Miscanthus pretreatment method by using lignin-degrading bacteria, which may be potentially used in improving enzymatic hydrolysability of biomass.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Lacase/metabolismo , Lignina/metabolismo , Poaceae/metabolismo , Bactérias/enzimologia , Biomassa , Hidrólise , Açúcares/análise
11.
Int J Biol Sci ; 15(13): 2844-2858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853222

RESUMO

Pleurochrysis genus algae are widely distributed in ocean waters. Pleurochrysis sp. algae are popularly known for its coccolithophores. Calcium carbonate (CaCO3) shells are major components of the coccolithophore, and they are key absorbers of carbondioxide. In this study, we have reported the effects of potassium nitrate (KNO3) concentration on calcium accumulation and total lipid, carbohydrate and protein contents of Pleurochrysis dentata. Results obtained from complexometric titration and scanning electron microscopy analysis showed higher rates of CaCO3 accumulation on Pleurochrysis dentata cell surface. We have also observed that overall cell size of Pleurochrysis dentata reached maximum when it was cultured at 0.75 mmol L-1 of KNO3. During 10 days of Pleurochrysis dentata culture total lipids and carbohydrate contents decreased, with slightly increased protein content. Results obtained from Fourier-Transform Infrared Spectroscopy (FTIR) also reported an increase in protein and decrease in lipids and carbohydrate contents, respectively. Similarly, Pleurochrysis dentata cultured at 1 mmol L-1 concentration of KNO3 exhibited the lowest carbohydrate (21.08%) and highest protein (32.87%) contents. Interestingly, Pleurochrysis dentata cultured without KNO3 exhibited 33.61% of total lipid content which reduced to a total lipid content of 13.67% when cultured at 1 mmol L-1 concentration of KNO3. Thus, culture medium containing higher than 1 mmol L-1 of KNO3 could inhibit the cell size of Pleurochrysis dentata and CaCO3 accumulation in shells but it could promote its cell growth. For the first time we have reported a relatively complete coccolith structure devoid of its protoplast. In this study, we have also described about the special planar structure of Pleurochrysis dentata CaCO3 shells present on its inner tube of the R unit and parallel to the outer tube of the V unit which we named it as "doornail structure". We believe that this doornail structure provides structural stability and support to the developing coccoliths in Pleurochrysis dentata. Also, we have discussed about the "double-disc" structure of coccoliths which are closely arranged and interlocked with each other. The double-disc structure ensures fixation of each coccolith and objecting its free horizontal movement and helps in attaining a complementary coccolith structure.


Assuntos
Carbonato de Cálcio/metabolismo , Haptófitas/metabolismo , Calcificação Fisiológica , Haptófitas/citologia , Nitratos/metabolismo , Compostos de Potássio/metabolismo
12.
Bioresour Technol ; 245(Pt A): 1008-1015, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28946202

RESUMO

In this study an effective bacterial pretreatment method was developed to improve digestibility of Miscanthus. Seven new bacterial isolates, which showed excellent xylanase production ability using Miscanthus as carbon source, were used to perform the pretreatment experiments. After pretreatment, the hemicellulose content and crystallinity index of Miscanthus were decreased, while the reducing sugars released from Miscanthus were significantly increased by 30.8-87.8% after enzymatic hydrolysis. Bacillus sp. G0 was selected to optimize the pretreatment parameters via response surface methodology due to its high reducing sugars released from Miscanthus. According to the optimal model, the pretreatment parameters were set as citrate buffer/G0 fermentation broth ratio at 0.34, pretreatment time at 100h and Tween-20 concentration at 1.73%. The reducing sugars released from Miscanthus pretreated by optimal parameters were 305mgg-1 dry biomass. The results suggested our bacterial pretreatment approaches have great potential to increase digestibility of bioenergy crops.


Assuntos
Bacillus , Lignina , Poaceae , Biomassa , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA