Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(2): e1006762, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30759076

RESUMO

An important goal of systems medicine is to study disease in the context of genetic and environmental perturbations to the human interactome network. For diseases with both genetic and infectious contributors, a key postulate is that similar perturbations of the human interactome by either disease mutations or pathogens can have similar disease consequences. This postulate has so far only been tested for a few viral species at the level of whole proteins. Here, we expand the scope of viral species examined, and test this postulate more rigorously at the higher resolution of protein domains. Focusing on diseases with both genetic and viral contributors, we found significant convergent perturbation of the human domain-resolved interactome by endogenous genetic mutations and exogenous viral proteins inducing similar disease phenotypes. Pan-cancer, pan-oncovirus analysis further revealed that domains of human oncoproteins either physically targeted or structurally mimicked by oncoviruses are enriched for cancer driver rather than passenger mutations, suggesting convergent targeting of cancer driver pathways by diverse oncoviruses. Our study provides a framework for high-resolution, network-based comparison of various disease factors, both genetic and environmental, in terms of their impacts on the human interactome.


Assuntos
Biologia Computacional/métodos , Interações Hospedeiro-Patógeno/genética , Mapas de Interação de Proteínas/genética , Humanos , Mutação , Fenótipo , Domínios Proteicos/genética , Proteínas/química , Proteínas Virais/metabolismo , Viroses , Vírus/metabolismo
2.
J Cell Sci ; 126(Pt 2): 445-53, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23230143

RESUMO

p27(Kip1), a cyclin-dependent kinase (CDK) inhibitor, is a multi-functional protein that regulates various cellular activities. Trophoblast proliferation, migration and invasion are some of the key processes of placental development. We have recently reported that Nodal, a member of the transforming growth factor-ß (TGF-ß) superfamily, inhibits human trophoblast cell proliferation, migration and invasion. In the present study, we investigated the mechanism by which Nodal regulates trophoblast activities. We found that Nodal increased p27 mRNA and protein levels by enhancing their stability. Interestingly, Nodal signaling also induced nuclear export of p27 and CDK2. Cytoplasmic translocation of p27 induced by Nodal requires p27 phosphorylation at S10. In addition, Nodal enhanced the association of p27 with CDK2, CDK5 and a microtubule-destabilizing protein, stathmin, and induced stathmin phosphorylation at S25 and S38. Furthermore, Nodal increased tubulin stability as revealed by immunofluorescent staining of acetylated tubulin. Finally, silencing of p27 reversed the inhibitory effect of Nodal on trophoblast cell proliferation, migration and invasion. Taken together, our findings revealed a novel function of simultaneous p27 and CDK2 cytoplasmic mislocalization in mediating growth-factor-regulated cell proliferation, migration and invasion.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citoplasma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Trofoblastos/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Quinase 2 Dependente de Ciclina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Fosforilação , Transdução de Sinais , Transfecção , Trofoblastos/citologia , Trofoblastos/enzimologia , Regulação para Cima
3.
Front Mol Biosci ; 8: 626600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012977

RESUMO

Effector proteins are bacterial virulence factors secreted directly into host cells and, through extensive interactions with host proteins, rewire host signaling pathways to the advantage of the pathogen. Despite the crucial role of globular domains as mediators of protein-protein interactions (PPIs), previous structural studies of bacterial effectors are primarily focused on individual domains, rather than domain-mediated PPIs, which limits their ability to uncover systems-level molecular recognition principles governing host-bacteria interactions. Here, we took an interaction-centric approach and systematically examined the potential of structural components within bacterial proteins to engage in or target eukaryote-specific domain-domain interactions (DDIs). Our results indicate that: 1) effectors are about six times as likely as non-effectors to contain host-like domains that mediate DDIs exclusively in eukaryotes; 2) the average domain in effectors is about seven times as likely as that in non-effectors to co-occur with DDI partners in eukaryotes rather than in bacteria; and 3) effectors are about nine times as likely as non-effectors to contain bacteria-exclusive domains that target host domains mediating DDIs exclusively in eukaryotes. Moreover, in the absence of host-like domains or among pathogen proteins without domain assignment, effectors harbor a higher variety and density of short linear motifs targeting host domains that mediate DDIs exclusively in eukaryotes. Our study lends novel quantitative insight into the structural basis of effector-induced perturbation of host-endogenous PPIs and may aid in the design of selective inhibitors of host-pathogen interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA