Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neoplasma ; 68(5): 924-937, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33998239

RESUMO

Homoharringtonine (HHT), was first isolated from the bark of Cephalotaxus harringtonia (Knight ex J. Forbes) K. Koch and Cephalotaxus fortunei Hook trees. The bark extract is used to treat leukemia and in recent years has also been used in traditional Chinese medicine (TCM) to treat solid tumors. However, the inhibitory mechanism of HHT in the progression of hepatocellular carcinoma (HCC) is rarely studied. We aimed to evaluate the antitumor efficacy of HHT on HCC in vitro and in vivo and elucidate the underlying molecular mechanism(s). HCC cell lines, including HCCLM3, HepG2, and Huh7, were used to evaluate the antitumor efficacy of HHT in vitro. Cytotoxicity and proliferative ability were evaluated by MTT and colony formation assays. Cell cycle progression and apoptosis in HHT-treated HCC cells were evaluated by flow cytometry. To determine the migration and invasion abilities of HCC cells, wound-healing and Transwell assays were used. Finally, western blot analysis was used to reveal the proteins involved. We also established a xenograft nude mouse model for in vivo assessments of the preclinical efficacy of HHT, mainly using hematoxylin and eosin staining, immunohistochemistry, ultrasound imaging (USI), and magnetic resonance imaging (MRI). HHT suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, and induced cell cycle arrest at the G2 phase and apoptosis. In the HCC xenograft model, HHT showed an obvious tumor-suppressive effect. Surprisingly, Slug expression was also decreased by HHT via the PI3K/AKT/GSK3ß signaling pathway at least partially suppressed the growth of HCC via the PI3K/AKT/GSK3ß/Slug signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Mepesuccinato de Omacetaxina , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chin J Nat Med ; 19(11): 815-824, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34844720

RESUMO

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Assuntos
Quinolizidinas/farmacologia , Neoplasias do Colo do Útero , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retroalimentação , Feminino , Células HeLa , Humanos , Interleucina-6/genética , Janus Quinase 1/genética , Camundongos , Camundongos Nus , Fator de Transcrição STAT3/genética , Transdução de Sinais , Neoplasias do Colo do Útero/tratamento farmacológico
3.
Yao Xue Xue Bao ; 45(12): 1570-5, 2010 Dec.
Artigo em Zh | MEDLINE | ID: mdl-21351499

RESUMO

Biodegradable four-arm star-shaped poly(ethylene glycol)-block-poly(L-lactic acid) copolymer (sPEG-b-PLLA), four-arm star-shaped poly(L-lactic acid) (sPLLA), linearly poly(ethylene glycol)-block-poly(L-lactic acid) copolymer (PEG-b-PLLA) and linearly poly(L-lactic acid) (PLLA) were synthesized from L-lactice acid, pentaerythritol, poly(ethylene glycol) and star-shaped poly(ethylene glycol), using the method of melt polycondensation, and the products were characterized and confirmed by 1H NMR spectroscopy, FT-IR and GPC. Four types of ibuprofen loaded microspheres based on the above four types of polymers, i.e., IBU/PLLA, IBU/sPLLA, IBU/PEG-b-PLLA, and IBU/sPEG-b-PLLA microspheres were prepared using the method of solvent evaporation, and the optimized preparation technology was obtained via orthogonal experiments, and the drug-encapsulating properties and in vitro drug-releasing properties were studied. The results showed that compared with IBU/PLLA and IBU/PEG-b-PLLA microspheres, the drug encapsulate efficiency of IBU/sPLLA and IBU/sPEG-b-PLLA microspheres were higher and the in vitro drug releasing rate slowed down, which mainly due to the faster degradation of sPLLA and sPEG-b-PLLA for the star-shaped structure and the block copolymerization of sPEG. The drug releasing curves of these three types of microspheres could be fit by first-order equation, and the releasing mechanism was non-Fickian diffusing, i.e., the synergetic effect of polymer degradation and drug diffusion.


Assuntos
Portadores de Fármacos , Ibuprofeno/administração & dosagem , Polímeros/química , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Preparações de Ação Retardada , Ibuprofeno/química , Lactatos/química , Ácido Láctico/química , Espectroscopia de Ressonância Magnética , Microesferas , Tamanho da Partícula , Poliésteres , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Mol Med Rep ; 16(6): 9401-9408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039593

RESUMO

Malignant gliomas are a group of aggressive neoplasms among human cancers. The curative effects of current treatments are finite for improving the prognosis of patients. Hyperthermia (HT) is an effective treatment for cancers; however, the effects of HT with different temperatures in treatment of MG and relevant mechanisms remain unclear. MTT assay and Annexin V­fluorescein isothiocyanate/propidium iodide staining were used for investigating the proliferation and apoptosis of C6 cells, respectively. Western blotting was applied to detect the expression of proteins. Ultrasonography was employed to evaluate the tumor formation rate, growth rate, angiogenesis rate and degree of hardness of tumors in vivo. The authors certified that HT with 42­46˚C x 1 h, 1 t could inhibit proliferation, promote apoptosis, reduce tumor formation rate, growth rate, angiogenesis rate, degree of hardness of tumors, ischemic tolerance and anoxic tolerance, and have synergy with temozolomide in C6 cells. Long­term HT (43˚C x 1 h, 1 t/5 d, 90 d) did not cut down the sensitivity of C6 cells to HT, and sustainably inhibited the proliferation of C6 cells. Furthermore, the authors proved HT produced these effects primarily through inhibition of the EGFR/STAT3/HIF­1A/VEGF­A pathway.


Assuntos
Apoptose , Neoplasias Encefálicas/patologia , Receptores ErbB/metabolismo , Glioma/patologia , Hipertermia Induzida , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Temperatura , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ratos Wistar , Padrões de Referência , Transdução de Sinais/efeitos dos fármacos , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA