Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 18(4): e1010137, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35421082

RESUMO

Viral infections can alter host transcriptomes by manipulating host splicing machinery. Despite intensive transcriptomic studies on SARS-CoV-2, a systematic analysis of alternative splicing (AS) in severe COVID-19 patients remains largely elusive. Here we integrated proteomic and transcriptomic sequencing data to study AS changes in COVID-19 patients. We discovered that RNA splicing is among the major down-regulated proteomic signatures in COVID-19 patients. The transcriptome analysis showed that SARS-CoV-2 infection induces widespread dysregulation of transcript usage and expression, affecting blood coagulation, neutrophil activation, and cytokine production. Notably, CD74 and LRRFIP1 had increased skipping of an exon in COVID-19 patients that disrupts a functional domain, which correlated with reduced antiviral immunity. Furthermore, the dysregulation of transcripts was strongly correlated with clinical severity of COVID-19, and splice-variants may contribute to unexpected therapeutic activity. In summary, our data highlight that a better understanding of the AS landscape may aid in COVID-19 diagnosis and therapy.


Assuntos
COVID-19 , Processamento Alternativo/genética , COVID-19/genética , Teste para COVID-19 , Humanos , Proteômica , SARS-CoV-2/genética , Transcriptoma
2.
Phytother Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895929

RESUMO

In 2022, there were around 20 million new cases and over 9.7 million cancer-related deaths worldwide. An increasing number of metabolites with anticancer activity in algae had been isolated and identified, which were promising candidates for cancer therapy. Red algae are well-known for the production of brominated metabolites, including terpenoids and phenols, which have the capacity to induce cell toxicity. Some non-toxic biological macromolecules, including polysaccharides, are distinct secondary metabolites found in many algae, particularly green algae. They possess anticancer activities by inhibiting tumor angiogenesis, stimulating the immune response, and inducing apoptosis. However, the structure-activity relationship between these components and antitumor activity, as well as certain taxa within the algae, remains relatively unstudied. This work is based on the reports published from 2003 to 2024 in PubMed and ISI Web of Science databases. A comprehensive review of the characterized algal anticancer active compounds, together with their structure and mechanism of action was performed. Also, their structure-activity relationship was preliminarily summarized to better assess their potential properties as a natural, safe bioactive product to be used as an alternative for the treatment of cancers, leading to new opportunities for drug discovery.

3.
Opt Express ; 28(22): 32331-32341, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114921

RESUMO

We propose and experimentally demonstrate modulation format-independent optical performance monitoring (OPM) based on a multi-task artificial neural network (MT-ANN). Optical power measurements at a series of center wavelengths adjusted using a widely tunable optical bandpass filter (OBPF) are used as the input features for a MT-ANN to simultaneously realize high-precision optical signal-to-noise ratio (OSNR) and launch power monitoring and baud rate identification (BRI). This technique is insensitive to chromatic dispersion (CD) and polarization mode dispersion (PMD). The experimental verification in a 9-channel WDM system shows that for 10 Gbaud QPSK and 32 Gbaud PDM-16QAM signals with OSNR in the range of 1-30 dB, the OSNR mean absolute error (MAE) and root mean square error (RMSE) are 0.28 dB and 0.48 dB, respectively. For launch power in the range of 0-8 dBm, the MAE and RMSE of the launch power monitoring are 0.034 dB and 0.066 dB, respectively, and the identification accuracy for both baud rates is 100%. Furthermore, this technique utilizes a single MT-ANN instead of three ANNs to realize the simultaneous monitoring of three OPM parameters, which greatly reduces the cost and complexity.

4.
Biopharm Drug Dispos ; 36(1): 64-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25256597

RESUMO

Erigeron breviscapus (Vant.) Hand-Mazz, a traditional Chinese medicine, is often co-prescribed with clopidogrel for the treatment of ischemic vascular diseases. Scutellarin is the representative bioactive flavonoid isolated from this herb. The aim of this study was to explore the effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel. The in vitro studies using rat liver microsomes showed that scutellarin significantly inhibited the metabolism of clopidogrel. The IC50 value was 2.1 µM. Ten male rats were employed to investigate the effect of scutellarin on the pharmacokinetics of clopidogrel in vivo. After pretreatment with scutellarin, there were significant increases in the AUC0-∞ (from 0.9 ± 0.4 to 1.7 ± 0.6 ng/ml h; p <0.05) and Cmax (from 0.4 ± 0.1 to 0.9 ± 0.1 ng/ml; p <0.05) of clopidogrel. The pharmacokinetic data for clopidogrel active metabolite showed significant decreases in AUC0-∞ (18.2 ± 5.6 to 11.4 ± 3.7 ng/ml h; p <0.05) and Cmax (from 8.2 ± 1.2 to 4.3 ± 0.3 ng/ml; p <0.05) after pretreatment with scutellarin. Collectively, the metabolism and pharmacokinetics of clopidogrel were significantly affected by scutellarin. This study indicated that potential herb-drug interaction between scutellarin and clopidogrel should be taken into consideration in clinical use.


Assuntos
Apigenina/farmacologia , Glucuronatos/farmacologia , Interações Ervas-Drogas , Inibidores da Agregação Plaquetária/farmacocinética , Ticlopidina/análogos & derivados , Animais , Apigenina/administração & dosagem , Apigenina/isolamento & purificação , Área Sob a Curva , Clopidogrel , Erigeron/química , Glucuronatos/administração & dosagem , Glucuronatos/isolamento & purificação , Concentração Inibidora 50 , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Ticlopidina/farmacocinética
5.
J Cancer ; 11(9): 2453-2464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201516

RESUMO

Objective: Cancer is expected to be the leading cause of death worldwide within the 21st century and is the single most important obstacle to extending life expectancy. Unfortunately, the most effective approach to combating cancers remains a complex and unsolved problem. Siglec-15 is a member of the Siglec family and plays a conserved regulatory role in the immune system of vertebrates. Previous studies on Siglec-15 have focused on its function in osteoclast regulation. The purpose of this study was to explore the significance of Siglec-15 mRNA in human cancer mainly based on information obtained from online databases. Method: Data were collected from several online databases. Serial analysis of gene expression (SAGE) and Virtual Northern, UALCAN Database Analysis, Catalog of Somatic Mutations in Cancer (COSMIC) analysis, the cBio cancer genomics portal, Cancer Regulome tools and data, Kaplan-Meier Plotter Analysis and the UCSC Xena website were used to analyze the data. Results: Compared with normal tissues, Siglec-15 up-regulation was widely observed in tuomrs. Differences in Siglec-15 expression were associated with different prognoses. Siglec-15 mutations are widely observed in tumors and interact with different genes in different cancer types. Conclusion: Siglec-15 is a potential target for the expansion of cancer immunotherapy.

6.
Oncotarget ; 8(29): 47984-47997, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28624790

RESUMO

Persistent activation of IGF1R/mTOR signaling pathway plays crucial role in the development of hepatocellular carcinoma (HCC). Therefore, our goal was to elucidate microRNAs (miRNAs) targeting IGF1R/mTOR and the therapeutic potential of single or dual miRNA on HCC development. In this study, we found that miR-497 and miR-99a that target the 3'-UTR of both IGF1R and mTOR were down-regulated in HCC human tissues and cell lines. Functional assay revealed that ectopic expression of miR-497 or miR-99a in HCC cells resulted in a significant inhibition on tumor growth and invasiveness in vitro and tumor development in vivo via repressing the expression of IGF1R and mTOR. Such inhibitory effect on tumor growth is reversed by application of IGF1 ((IGF1R ligand) or MHY1485 (mTOR agonist) in vitro. Furthermore, we found that simultaneous over-expression of both miR-497 and miR-99a exhibited much stronger inhibitory effects on tumor growth than their individual effect, which is still correlated with significantly stronger repression of IGF1R and mTOR. Overall, our results suggest that miR-497 and miR-99a both function as tumor-suppressive miRNAs by suppressing IGF1R/mTOR signaling pathway. The synergistic actions of these two miRNAs partly correlated with IGF1R and mTOR levels, which may represent new strategies for the molecular treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , Receptores de Somatomedina/genética , Serina-Treonina Quinases TOR/genética , Regiões 3' não Traduzidas , Carcinoma Hepatocelular/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Interferência de RNA , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Sci Rep ; 6: 26812, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245949

RESUMO

C-kit positive cardiac stem cells (CSCs) have been shown to contribute to myocardial regeneration after infarction. Previously, we have shown that the c-kit ligand stem cell factor (SCF) can induce CSC migration into the infarcted area during myocardial infarction (MI). However, the precise mechanism involved is not fully understood. In this study, we found that CSCs also express C-X-C chemokine receptor type 4 (CXCR4), which is a typical member of the seven transmembrane-spanning G protein-coupled receptor (GPCR). In vitro, activation of c-kit signalling by SCF promotes migration of CSCs with increased phosphorylation of CXCR4-serine 339, p38 mitogen-activated protein kinase (p38 MAPK) and extracellular regulated protein kinases 1/2 (ERK1/2). Knockdown of CXCR4 expression by siRNA reduces SCF/c-kit-induced migration and downstream signalling. As previously reported, CXCR4-serine 339 phosphorylation is mainly regulated by GPCR kinase 6 (GRK6); thus, silencing of GRK6 expression by siRNA impairs CXCR4-serine 339 phosphorylation and migration of CSCs caused by SCF. In vivo, knockdown of GRK6 impairs the ability of CSCs to migrate into peri-infarcted areas. These results demonstrate that SCF-induced CSC migration is regulated by the transactivation of CXCR4-serine 339 phosphorylation, which is mediated by GRK6.


Assuntos
Células-Tronco Adultas/fisiologia , Quimiotaxia/fisiologia , Quinases de Receptores Acoplados a Proteína G/fisiologia , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Receptores CXCR4/metabolismo , Fator de Células-Tronco/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Feminino , Quinases de Receptores Acoplados a Proteína G/antagonistas & inibidores , Quinases de Receptores Acoplados a Proteína G/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Fosforilação , Fosfosserina/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA