Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Med Mycol ; 61(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715154

RESUMO

Candida glabrata is an opportunistic fungal pathogen and the second most prevalent species isolated from candidiasis patients. C. glabrata has intrinsic tolerance to antifungal drugs and oxidative stresses and the ability to adhere to mucocutaneous surfaces. However, knowledge about the regulation of its virulence traits is limited. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex modulates gene transcription by histone acetylation through the histone acetyltransferase (HAT) module comprised of Gcn5-Ada2-Ada3. Previously, we showed that the ada2 mutant was hypervirulent but displayed decreased tolerance to antifungal drugs and cell wall perturbing agents. In this study, we further characterized the functions of Ada3 and Gcn5 in C. glabrata. We found that single, double, or triple deletions of the HAT module, as expected, resulted in a decreased level of acetylation on histone H3 lysine 9 (H3K9) and defective growth. These mutants were more susceptible to antifungal drugs, oxidative stresses, and cell wall perturbing agents compared with the wild-type. In addition, HAT module mutants exhibited enhanced agar invasion and upregulation of adhesin and proteases encoding genes, whereas the biofilm formation of those mutants was impaired. Interestingly, HAT module mutants exhibited enhanced induction of catalases (CTA1) expression upon treatment with H2O2 compared with the wild-type. Lastly, although ada3 and gcn5 exhibited marginal hypervirulence, the HAT double and triple mutants were hypervirulent in a murine model of candidiasis. In conclusion, the HAT module of the SAGA complex plays unique roles in H3K9 acetylation, drug tolerance, oxidative stress response, adherence, and virulence in C. glabrata.


The present study characterizes the functions of the conserved histone acetyltransferase module in the pathogenesis of the pathogenic yeast Candida glabrata. The results indicated that this module has divergent roles in the pathogenesis of C. glabrata.


Assuntos
Candidíase , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Candida glabrata/genética , Fatores de Transcrição/genética , Antifúngicos , Peróxido de Hidrogênio , Candidíase/veterinária , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Med Mycol ; 61(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37844959

RESUMO

Candidiasis is one of the most important fungal diseases and generally refers to diseases of the skin or mucosal tissues caused by Candida species. Candida glabrata is an opportunistic human fungal pathogen. Infection with C. glabrata has significantly increased due to innate antifungal drug tolerance and the ability to adhere to mucocutaneous surfaces. Spt-Ada-Gcn5 acetyltransferase complex contains two different post-translational modifications, histone acetylation (HAT) module and deubiquitination (DUB) module, which are decisive in gene regulation and highly conserved in eukaryotes. Previous research in our laboratory found that the HAT module ADA2 could regulate C. glabrata oxidative stress tolerance, drug tolerance, cell wall integrity, and virulence. However, the roles of the DUB module that is comprised of UBP8, SGF11, SGF73, and SUS1 genes in those phenotypes are not yet understood. In this study, we found that DUB module genes UBP8, SGF11, and SUS1, but not SGF73 positively regulate histone H2B DUB. Furthermore, ubp8, sgf11, and sus1 mutants exhibited decreased biofilm formation and sensitivity to cell wall-perturbing agent sodium dodecyl sulfate and antifungal drug amphotericin B. In addition, the sgf73 mutant showed increased biofilm formation but was susceptible to oxidative stresses, antifungal drugs, and cell wall perturbing agents. The ubp8, sgf11, and sus1 mutants showed marginal hypovirulence, whereas the sgf73 mutant exhibited virulence similar to the wild type in a murine systemic infection model. In conclusion, the C. glabrata DUB module plays distinct roles in H2B ubiquitination, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance, but exhibits minor roles in virulence.


In this study, we found that the deubiquitination (DUB) module of the Spt-Ada-Gcn5 acetyltransferase complex is involved in H2B DUB, oxidative stress response, biofilm formation, cell wall integrity, and drug tolerance in the human fungal pathogen Candida glabrata. The multiple functions controlled by the DUB module exhibit conserved and divergent functions between Saccharomyces cerevisiae, C. albicans, and C. glabrata.


Assuntos
Candida glabrata , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Camundongos , Candida glabrata/genética , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Histona Acetiltransferases/genética , Histonas/metabolismo , Biofilmes , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
BMC Biol ; 20(1): 236, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266645

RESUMO

BACKGROUND: The Fusarium solani species complex (FSSC) comprises fungal pathogens responsible for mortality in a diverse range of animals and plants, but their genome diversity and transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced, assembled and annotated six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host origins. We established a pathosystem and investigated the expression data of F. falciforme and F. keratoplasticum in Chinese softshell turtle (Pelodiscus sinensis) host. RESULTS: Comparative analyses between the FSSC genomes revealed a spectrum of conservation patterns in chromosomes categorised into three compartments: core, fast-core (FC), and lineage-specific (LS). LS chromosomes contribute to variations in genomes size, with up to 42.2% of variations between F. vanettenii strains. Each chromosome compartment varied in structural architectures, with FC and LS chromosomes contain higher proportions of repetitive elements with genes enriched in functions related to pathogenicity and niche expansion. We identified differences in both selection in the coding sequences and DNA methylation levels between genome features and chromosome compartments which suggest a multi-speed evolution that can be traced back to the last common ancestor of Fusarium. We further demonstrated that F. falciforme and F. keratoplasticum are opportunistic pathogens by inoculating P. sinensis eggs and identified differentially expressed genes also associated with plant pathogenicity. These included the most upregulated genes encoding the CFEM (Common in Fungal Extracellular Membrane) domain. CONCLUSIONS: The high-quality genome assemblies provided new insights into the evolution of FSSC chromosomes, which also serve as a resource for studies of fungal genome evolution and pathogenesis. This study also establishes an animal model for fungal pathogens of trans-kingdom hosts.


Assuntos
Fusarium , Animais , Fusarium/genética , Transcriptoma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Filogenia , Genômica , Plantas/genética
4.
Med Mycol ; 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32823278

RESUMO

Cryptococcal meningitis is a prevalent invasive fungal infection that causes around 180 000 deaths annually. Currently, treatment for cryptococcal meningitis is limited and new therapeutic options are needed. Historically, medicinal plants are used to treat infectious and inflammatory skin infections. Tryptanthrin is a natural product commonly found in these plants. In this study, we demonstrated that tryptanthrin had antifungal activity with minimum inhibitory concentration (MIC) of 2 µg/ml against Cryptococcus species and of 8 µg/ml against Trichophyton rubrum. Further analysis demonstrated that tryptanthrin exerted fungistatic and potent antifungal activity at elevated temperature. In addition, tryptanthrin exhibited a synergistic effect with the calcineurin inhibitors FK506 and cyclosporine A against Cryptococcus neoformans. Furthermore, our data showed that tryptanthrin induced cell cycle arrest at the G1/S phase by regulating the expression of genes encoding cyclins and the SBF/MBF complex (CLN1, MBS1, PCL1, and WHI5) in C. neoformans. Screening of a C. neoformans mutant library further revealed that tryptanthrin was associated with various transporters and signaling pathways such as the calcium transporter (Pmc1) and protein kinase A signaling pathway. In conclusion, tryptanthrin exerted novel antifungal activity against Cryptococcus species through a mechanism that interferes with the cell cycle and signaling pathways. LAY SUMMARY: The natural product tryptanthrin had antifungal activity against Cryptococcus species by interfering cell cycle and exerted synergistic effects with immunosuppressants FK506 and cyclosporine A. Our findings suggest that tryptanthrin may be a potential drug or adjuvant for the treatment of cryptococcosis.

5.
Med Mycol ; 58(4): 493-504, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31297540

RESUMO

In this study, a Food and Drug Administration (FDA)-approved drug with previously unreported antifungal activity was investigated for suitability for use as an anticryptococcal agent. First, we screened a compound library of 1018 FDA-approved drugs against Cryptococcus neoformans. Of 52 drugs possessing anti-Cryptococcus activity, eltrombopag was chosen due to its novel activity. The susceptibility of Cryptococcus against eltrombopag was then studied by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), while the synergy of eltrombopag with other drugs was tested by fractional inhibitory concentration index (FICI). Eltrombopag had a limited spectrum of antifungal activity against C. neoformans/C. gattii species complex (MICs of 0.125 mg/l), Candida glabrata (MIC, 0.25 mg/l), and Trichophyton rubrum (MIC, 0.5 mg/l). Eltrombopag affected cryptococcal virulence factors, including capsule and biofilm formation, melanin production, and growth ability at 37°C. Further, RNA sequencing and deletion mutant library screening experiments revealed that genes involved in the calcineurin pathway, lipid biosynthesis, membrane component, and transporter genes were associated with eltrombopag. In addition, eltrombopag showed synergism with the calcineurin inhibitor FK506 (FICI < 0.5) against Cryptococcus species. In conclusion, eltrombopag exhibited excellent antifungal activity against Cryptococcus species potentially via a mode of action which interferes with virulence factors and the calcineurin pathway, indicating that eltrombopag might be usefully repurposed as an antifungal agent for treating cryptococcosis.


Assuntos
Antifúngicos/farmacologia , Benzoatos/farmacologia , Cryptococcus/efeitos dos fármacos , Reposicionamento de Medicamentos , Hidrazinas/farmacologia , Pirazóis/farmacologia , Arthrodermataceae/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Cryptococcus/classificação , Cryptococcus/patogenicidade , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/patogenicidade , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/patogenicidade , Sinergismo Farmacológico , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Receptores de Trombopoetina/agonistas , Bibliotecas de Moléculas Pequenas , Tacrolimo/farmacologia
6.
Med Mycol ; 58(2): 248-259, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100153

RESUMO

Histone modifications play a crucial role in eukaryotic gene regulation. The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex controls histone acetylation, with Gcn5 (GcnE) acting as the acetyltransferase. In the Aspergillus species, GcnE has been shown to regulate asexual development and secondary metabolism. Apart from this, GcnE is required for pathogenicity in plant fungal pathogen A. flavus; however, the role of GcnE in the pathogenicity of human pathogenic fungus A. fumigatus is unknown. In this study, we uncovered the key roles of GcnE in A. fumigatus conidiation, stress responses, and biofilm formation. We observed that deletion of gcnE resulted in aberrant conidiation in which conidiophores displayed abnormal phialide formation. In addition, the ΔgcnE mutant grew slightly faster under limited nitrogen sources (1 mM of ammonium or nitrate) compared to the wild type. The ΔgcnE mutant exhibited increased susceptibility to cell wall-perturbing agents, H2O2 and menadione but enhanced tolerance to LiCl. Furthermore, we showed that GcnE is involved in biofilm formation, and overexpression of adherence-related genes such as somA or uge3 partially rescued biofilm formation defects in the ΔgcnE mutant background. Interestingly, GcnE was not required for virulence in a neutropenic murine model of invasive aspergillosis. These results suggest that GcnE is critical for conidiation and biofilm formation but not virulence in A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , Esporos Fúngicos/genética , Animais , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Feminino , Proteínas Fúngicas/metabolismo , Deleção de Genes , Histona Acetiltransferases/metabolismo , Infecções Fúngicas Invasivas/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Mutação , Nitrogênio/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
7.
Artigo em Inglês | MEDLINE | ID: mdl-29311082

RESUMO

Candida glabrata, the second most frequent cause of candidiasis after Candida albicans, is an emerging human fungal pathogen that is intrinsically drug tolerant. Currently, studies of C. glabrata genes involved in drug tolerance are limited. Ada2, a component serving as a transcription adaptor of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, is required for antifungal drug tolerance and virulence in C. albicans However, its roles in C. glabrata remain elusive. In this study, we found that ada2 mutants demonstrated severe growth defects at 40°C but only mild defects at 37°C or 25°C. In addition, C. glabrata ada2 mutants exhibited pleiotropic phenotypes, including susceptibility to three classes of antifungal drugs (i.e., azoles, echinocandins, and polyenes) and cell wall-perturbing agents but resistance to the endoplasmic reticulum stressor tunicamycin. According to RNA sequence analysis, the expression of 43 genes was downregulated and the expression of 442 genes was upregulated in the ada2 mutant compared to their expression in the wild type. C. glabrata ADA2, along with its downstream target ERG6, controls antifungal drug tolerance and cell wall integrity. Surprisingly, ada2 mutants were hypervirulent in a murine model of systemic infection, possibly due to the upregulation of multiple adhesin-like genes, increased agar invasion, and overstimulation of murine tumor necrosis factor alpha production.


Assuntos
Antifúngicos/uso terapêutico , Candida glabrata/patogenicidade , Candidíase/tratamento farmacológico , Candidíase/metabolismo , Proteínas Fúngicas/metabolismo , Animais , Candidíase/genética , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Virulência/genética
8.
FEMS Yeast Res ; 15(4): fov016, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25878052

RESUMO

Human fungal infections have significantly increased in recent years due to the emergence of immunocompromised patients with AIDS and cancer. Among them, Candida species are frequently isolated and associated with high mortality if not appropriately treated. Current antifungal drugs (azoles, echinocandins and polyenes) are not sufficient to combat Candida species particularly those that are drug resistant. Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is an attractive antifungal drug target, and its inhibitor (FK506 or cyclosporin A) can be combined with azoles or echinocandins for use against multidrug-resistant Candida species. The role of calcineurin in the hyphal growth of Candida albicans is controversial, but its roles in C. dubliniensis, C. tropicalis and C. lusitaniae can be demonstrated. In addition, calcineurin is required for virulence of Candida species in murine systemic, ocular or urinary infection models. However, the requirement for calcineurin substrate Crz1 in these infection models varies in Candida species, suggesting that Crz1 has diverse functions in different Candida species. Besides being critical for growth in serum of Candida species, calcineurin is critical for plasma membrane integrity and growth at body temperature (37°C) uniquely in C. glabrata, suggesting that Candida calcineurin controls pathogenesis via various novel mechanisms. In this review, we summarize studies of calcineurin signaling and hyphal growth, virulence and its relationship with drug tolerance in Candida species, focusing on the divergent and conserved functions.


Assuntos
Calcineurina/metabolismo , Candida/fisiologia , Candida/patogenicidade , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Estresse Fisiológico , Animais , Candida/crescimento & desenvolvimento , Humanos , Hifas/crescimento & desenvolvimento , Camundongos , Virulência
9.
Eukaryot Cell ; 13(7): 844-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24442892

RESUMO

Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C. tropicalis is able to form germ tubes, pseudohyphae, and hyphae, but the genes involved in hyphal growth machinery and virulence remain unclear in C. tropicalis. Recently, echinocandin- and azole-resistant C. tropicalis isolates have frequently been isolated from various patients around the world, making treatment difficult. However, studies of the C. tropicalis genes involved in drug tolerance are limited. Here, we investigated the roles of calcineurin and its potential target, Crz1, for core stress responses and pathogenesis in C. tropicalis. We demonstrate that calcineurin and Crz1 are required for hyphal growth, micafungin tolerance, and virulence in a murine systemic infection model, while calcineurin but not Crz1 is essential for tolerance of azoles, caspofungin, anidulafungin, and cell wall-perturbing agents, suggesting that calcineurin has both Crz1-dependent and -independent functions in C. tropicalis. In addition, we found that calcineurin and Crz1 have opposite roles in controlling calcium tolerance. Calcineurin serves as a negative regulator, while Crz1 plays a positive role for calcium tolerance in C. tropicalis.


Assuntos
Calcineurina/metabolismo , Candida tropicalis/metabolismo , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Animais , Antifúngicos/farmacologia , Calcineurina/genética , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/patogenicidade , Candidíase/microbiologia , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Micafungina , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
10.
PLoS Pathog ; 8(5): e1002718, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615574

RESUMO

The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Antifúngicos/uso terapêutico , Sequência de Bases , Calcineurina/genética , Calcineurina/metabolismo , Candida glabrata/metabolismo , Candidemia/tratamento farmacológico , Candidemia/microbiologia , Caspofungina , Evolução Molecular , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Glucosiltransferases/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lipopeptídeos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Polimorfismo Genético , Análise de Sequência de DNA
11.
PLoS Pathog ; 7(8): e1002177, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21852949

RESUMO

In eukaryotic cells, the unfolded protein response (UPR) pathway plays a crucial role in cellular homeostasis of the endoplasmic reticulum (ER) during exposure to diverse environmental conditions that cause ER stress. Here we report that the human fungal pathogen Cryptococcus neoformans has evolved a unique UPR pathway composed of an evolutionarily conserved Ire1 protein kinase and a novel bZIP transcription factor encoded by HXL1 (HAC1 and XBP1-Like gene 1). C. neoformans HXL1 encodes a protein lacking sequence homology to any known fungal or mammalian Hac1/Xbp1 protein yet undergoes the UPR-induced unconventional splicing in an Ire1-dependent manner upon exposure to various stresses. The structural organization of HXL1 and its unconventional splicing is widely conserved in C. neoformans strains of divergent serotypes. Notably, both C. neoformans ire1 and hxl1 mutants exhibited extreme growth defects at 37°C and hypersensitivity to ER stress and cell wall destabilization. All of the growth defects of the ire1 mutant were suppressed by the spliced active form of Hxl1, supporting that HXL1 mRNA is a downstream target of Ire1. Interestingly, however, the ire1 and hxl1 mutants showed differences in thermosensitivity, expression patterns for a subset of genes, and capsule synthesis, indicating that Ire1 has both Hxl1-dependent and -independent functions in C. neoformans. Finally, Ire1 and Hxl1 were shown to be critical for virulence of C. neoformans, suggesting UPR signaling as a novel antifungal therapeutic target.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cryptococcus neoformans/patogenicidade , Retículo Endoplasmático/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Resposta a Proteínas não Dobradas/genética , Processamento Alternativo , Animais , Criptococose/imunologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiologia , Feminino , Camundongos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Bioorg Med Chem Lett ; 23(17): 4828-31, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891181

RESUMO

Miltefosine is an alkylphosphocholine that shows broad-spectrum in vitro antifungal activities and limited in vivo efficacy in mouse models of cryptococcosis. To further explore the potential of this class of compounds for the treatment of systemic mycoses, nine analogs (3a-3i) were synthesized by modifying the choline structural moiety and the alkyl chain length of miltefosine. In vitro testing of these compounds against the opportunistic fungal pathogens Candida albicans, Candida glabrata, Candida krusei, Aspergillus fumigatus, and Cryptococcus neoformans revealed that N-benzyl-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3a), N,N-dimethyl-N-(4-nitrobenzyl)-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3d), and N-(4-methoxybenzyl)-N,N-dimethyl-2-{[(hexadecyloxy)hydroxyphosphinyl]oxy}ethanaminium inner salt (3e) exhibited minimum inhibitory concentrations (MIC) of 2.5-5.0 µg/mL against all tested pathogens, when compared to miltefosine with MICs of 2.5-3.3 µg/mL. Compound 3a showed low in vitro cytotoxicity against three mammalian cell lines similar to miltefosine. In vivo testing of 3a and miltefosine against C. albicans in a mouse model of systemic infection did not demonstrate efficacy. The results of this study indicate that further investigation will be required to determine the potential usefulness of the alkylphosphocholines in the treatment of invasive fungal infections.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Fosforilcolina/análogos & derivados , Animais , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Linhagem Celular , Criptococose/tratamento farmacológico , Cryptococcus neoformans/efeitos dos fármacos , Humanos , Camundongos , Fosforilcolina/química , Fosforilcolina/farmacologia
13.
Eukaryot Cell ; 10(6): 803-19, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21531874

RESUMO

Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Calcineurina/genética , Candida/patogenicidade , Farmacorresistência Fúngica/genética , Hifas/genética , Animais , Antifúngicos/farmacologia , Calcineurina/metabolismo , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candidemia/microbiologia , Candidíase Bucal/microbiologia , Caspofungina , Contagem de Colônia Microbiana , Dentaduras , Equinocandinas/farmacologia , Infecções Oculares Fúngicas/microbiologia , Fluconazol/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Lipopeptídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Viabilidade Microbiana , Mariposas/microbiologia , Ratos , Ratos Sprague-Dawley , Virulência
14.
Front Plant Sci ; 13: 998707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388520

RESUMO

Potato common scab, which is mainly caused by the bacterium Streptomyces scabies, occurs in key potato growing regions worldwide. It causes necrotic or corky symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological control for combating potato common scab in Taiwan. It can only reduce the occurrence by cultivation control, but the efficacy is limited. Previously we found that Bacillus amyloliquefaciens Ba01 could control potato common scab in pot assay and in the field. The potential anti-S. scabies mechanism was associated with surfactin secretion, but further molecular dissection was not conducted. Thus, in this study we aimed to determine whether surfactin is the main compound active against S. scabies by knocking out the srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion. Two independent Δsrf mutants were obtained and confirmed by specific primers and mass spectrometry. The swarming ability and S. scabies inhibition was significantly decreased (P<0.001) in Δsrf mutants. The swarming ability of Δsrf mutants could be restored by the addition of surfactin. Furthermore, we found that Ba01 formed wrinkled biofilm in MSgg liquid medium, while Δsrf mutants formed biofilm abnormally. Furthermore, the α-amylase, protease and phosphate-solubilizing ability of Δsrf mutants was decreased, and the mutants could not inhibit the growth and sporulation of S. scabies on potato tuber slices. In conclusion, srf gene cluster of B. amyloliquefaciens Ba01 is responsible for the secretion of surfactin and inhibition of S. scabies.

15.
mBio ; 13(6): e0294422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377896

RESUMO

The KEOPS (kinase, putative endopeptidase, and other proteins of small size) complex has critical functions in eukaryotes; however, its role in fungal pathogens remains elusive. Herein, we comprehensively analyzed the pathobiological functions of the fungal KEOPS complex in Cryptococcus neoformans (Cn), which causes fatal meningoencephalitis in humans. We identified four CnKEOPS components: Pcc1, Kae1, Bud32, and Cgi121. Deletion of PCC1, KAE1, or BUD32 caused severe defects in vegetative growth, cell cycle control, sexual development, general stress responses, and virulence factor production, whereas deletion of CGI121 led to similar but less severe defects. This suggests that Pcc1, Kae1, and Bud32 are the core KEOPS components, and Cgi121 may play auxiliary roles. Nevertheless, all KEOPS components were essential for C. neoformans pathogenicity. Although the CnKEOPS complex appeared to have a conserved linear arrangement of Pcc1-Kae1-Bud32-Cgi121, as supported by physical interaction between Pcc1-Kae1 and Kae1-Bud32, CnBud32 was found to have a unique extended loop region that was critical for the KEOPS functions. Interestingly, CnBud32 exhibited both kinase activity-dependent and -independent functions. Supporting its pleiotropic roles, the CnKEOPS complex not only played conserved roles in t6A modification of ANN codon-recognizing tRNAs but also acted as a major transcriptional regulator, thus controlling hundreds of genes involved in various cellular processes, particularly ergosterol biosynthesis. In conclusion, the KEOPS complex plays both evolutionarily conserved and divergent roles in controlling the pathobiological features of C. neoformans and could be an anticryptococcal drug target. IMPORTANCE The cellular function and structural configuration of the KEOPS complex have been elucidated in some eukaryotes and archaea but have never been fully characterized in fungal pathogens. Here, we comprehensively analyzed the pathobiological roles of the KEOPS complex in the globally prevalent fungal meningitis-causing pathogen C. neoformans. The CnKEOPS complex, composed of a linear arrangement of Pcc1-Kae1-Bud32-Cgi121, not only played evolutionarily conserved roles in growth, sexual development, stress responses, and tRNA modification but also had unique roles in controlling virulence factor production and pathogenicity. Notably, a unique extended loop structure in CnBud32 is critical for the KEOPS complex in C. neoformans. Supporting its pleiotropic roles, transcriptome analysis revealed that the CnKEOPS complex governs several hundreds of genes involved in carbon and amino acid metabolism, pheromone response, and ergosterol biosynthesis. Therefore, this study provides novel insights into the fungal KEOPS complex that could be exploited as a potential antifungal drug target.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Humanos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Ergosterol , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfotransferases/metabolismo , Endopeptidases/metabolismo
16.
Mol Microbiol ; 75(5): 1112-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20132453

RESUMO

Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1 Delta/Delta, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1 Delta/Delta mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1 Delta/Delta psd2 Delta/Delta double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1 Delta/Delta mutant. The psd1 Delta/Delta psd2 Delta/Delta mutant exhibits phenotypes similar to those of the cho1 Delta/Delta mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1 Delta/Delta and psd1 Delta/Delta psd2 Delta/Delta mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Candida albicans/fisiologia , Carboxiliases/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Animais , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/patologia , Carboxiliases/genética , Deleção de Genes , Histocitoquímica , Imuno-Histoquímica , Rim/microbiologia , Rim/patologia , Camundongos , Microscopia , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Análise de Sobrevida , Virulência
17.
Med Mycol Case Rep ; 32: 34-38, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33732609

RESUMO

Fusarium species are common plant and animal pathogens. For humans, there are two dominant species complexes, F. solani species complex (FSSC) and F. oxysporum species complex (FOSC), which both infect immunocompromised individuals. However, there are few reports related to elasmobranchs infected by Fusarium species. In this study, we report a case of a rough-tail stingray from an ocean park infected by FSSC diagnosed using histopathology and microscopic observation, with morphological characteristics and molecular techniques used to identify the pathogen. Histopathology showed fungal hyphae invading stingray tissues, while micro/macroconidia were found under the microscope. We identified this pathogen as FSSC 12 through phylogenetic analysis using internal transcribed spacer (ITS) and elongation factor 1-alpha (EF1-α) sequences. Furthermore, we report that application of voriconazole (orally) and terbinafine (topically) constituted an effective therapy, curing the stingray.

18.
Front Microbiol ; 12: 756100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790182

RESUMO

Wilt disease of roselle (Hibiscus sabdariffa L.) is common in Taiwan; however, the causative agent remains unknown. The stems of wilted roselle are browned, slightly constricted, and covered by white aerial hyphae, suggesting that potential pathogens may originate from soil. To identify the potential pathogens, we conducted a rhizosphere microbiota survey in phenotypically healthy and diseased plants through fungal internal transcribed spacer (ITS) and bacterial 16S rRNA amplicon sequencing for uncovering the microbial compositions in the roselle rhizosphere. The fungal family Nectriaceae exhibited significantly higher abundance in diseased rhizospheres than in healthy rhizospheres, and this bacterial community was more specific to geography (i.e., plot-dependent) than to rhizosphere disease status. However, a few bacterial groups such as Bacilli were associated with the healthy rhizosphere. Fusarium species were the most dominant species of Nectriaceae in the survey and became the main target for potential pathogen isolation. We successfully isolated 119 strains from diseased plants in roselle fields. Koch's postulates were used to evaluate the pathogenicity of these strains; our results indicated that Fusarium solani K1 (FsK1) can cause wilting and a rotted pith in roselles, which was consistent with observations in the fields. This is the first demonstration that F. solani can cause roselle wilt in Taiwan. Furthermore, these newly isolated strains are the most dominant operational taxonomic units detected in ITS amplicon sequencing in diseased rhizospheres, which serves as further evidence that F. solani is the main pathogen causing the roselle wilt disease. Administration of Bacillus velezensis SOI-3374, a strain isolated from a healthy roselle rhizosphere, caused considerable anti-FsK1 activity, and it can serve as a potential biocontrol agent against roselle wilt disease.

19.
Pathogens ; 9(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531904

RESUMO

Besides their positive role, microorganisms are related to a number of undesirable effects, including many diseases, biodeterioration and food spoilage, so when their presence is undesired, they must be controlled. Numerous biocides limiting the development of microorganisms have been proposed, however, in this paper the biocidal and inhibitory activity of quaternary ammonium salts (QASs) and their zwitterionic derivatives is addressed. This paper presents the current state of knowledge about the biocidal activity of QAS and their derivatives. Moreover, the known mechanisms of antimicrobial activity and the problem of emerging resistance to QAS are discussed. The latest trends in the study of surfactants and their potential use are also presented.

20.
Front Microbiol ; 11: 539702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193126

RESUMO

Fusarium wilt of tomato caused by the ascomycetous fungus Fusarium oxysporum f. sp. lycopersici (Fol) is widespread in most tomato planting areas. Calcineurin is a heterodimeric calcium/calmodulin-dependent protein phosphatase comprised of catalytic (Cna1) and regulatory (Cnb1) subunits. Calcineurin has been studied extensively in human fungal pathogens, but less is known about its roles in plant fungal pathogens. It is known that calcineurin regulates fungal calcium signaling, growth, drug tolerance, and virulence. However, the roles of calcineurin in Fol have not yet been characterized. In this study, we deleted calcineurin CNA1 and CNB1 genes to characterize their roles in conidiation, chlamydospore formation and virulence in Fol. Our results revealed that both cna1 and cnb1 mutants show defects in calcineurin phosphatase activity, vegetative growth and conidiation as compared to the wild type. Furthermore, calcineurin mutants exhibited blunted and swollen hyphae as observed by scanning electron microscopy. Interestingly, we found that Fol calcineurin is critical for chlamydospore formation, a function of calcineurin previously undocumented in the fungal kingdom. According to transcriptome analysis, the expression of 323 and 414 genes was up- and down-regulated, respectively, in both cna1 and cnb1 mutants. Based on the pathogen infection assay, tomato plants inoculated with cna1 or cnb1 mutant have a dramatic reduction in disease severity, indicating that calcineurin has a vital role in Fol virulence. In conclusion, our findings suggest that Fol calcineurin is required, at least in part, for phosphatase activity, vegetative growth, conidiation, chlamydospore formation, and virulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA