Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 617(7962): 724-729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138081

RESUMO

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

2.
N Engl J Med ; 390(3): 230-241, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38231624

RESUMO

BACKGROUND: Simnotrelvir is an oral 3-chymotrypsin-like protease inhibitor that has been found to have in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and potential efficacy in a phase 1B trial. METHODS: In this phase 2-3, double-blind, randomized, placebo-controlled trial, we assigned patients who had mild-to-moderate coronavirus disease 2019 (Covid-19) and onset of symptoms within the past 3 days in a 1:1 ratio to receive 750 mg of simnotrelvir plus 100 mg of ritonavir or placebo twice daily for 5 days. The primary efficacy end point was the time to sustained resolution of symptoms, defined as the absence of 11 Covid-19-related symptoms for 2 consecutive days. Safety and changes in viral load were also assessed. RESULTS: A total of 1208 patients were enrolled at 35 sites in China; 603 were assigned to receive simnotrelvir and 605 to receive placebo. Among patients in the modified intention-to-treat population who received the first dose of trial drug or placebo within 72 hours after symptom onset, the time to sustained resolution of Covid-19 symptoms was significantly shorter in the simnotrelvir group than in the placebo group (180.1 hours [95% confidence interval {CI}, 162.1 to 201.6] vs. 216.0 hours [95% CI, 203.4 to 228.1]; median difference, -35.8 hours [95% CI, -60.1 to -12.4]; P = 0.006 by Peto-Prentice test). On day 5, the decrease in viral load from baseline was greater in the simnotrelvir group than in the placebo group (mean difference [±SE], -1.51±0.14 log10 copies per milliliter; 95% CI, -1.79 to -1.24). The incidence of adverse events during treatment was higher in the simnotrelvir group than in the placebo group (29.0% vs. 21.6%). Most adverse events were mild or moderate. CONCLUSIONS: Early administration of simnotrelvir plus ritonavir shortened the time to the resolution of symptoms among adult patients with Covid-19, without evident safety concerns. (Funded by Jiangsu Simcere Pharmaceutical; ClinicalTrials.gov number, NCT05506176.).


Assuntos
COVID-19 , Inibidores de Protease de Coronavírus , Adulto , Humanos , Administração Oral , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , China , Proteínas M de Coronavírus/antagonistas & inibidores , Proteínas M de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/administração & dosagem , Inibidores de Protease de Coronavírus/efeitos adversos , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Protease de Coronavírus/uso terapêutico , COVID-19/metabolismo , COVID-19/terapia , Tratamento Farmacológico da COVID-19/métodos , Método Duplo-Cego , Ritonavir/administração & dosagem , Ritonavir/efeitos adversos , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Fatores de Tempo , Combinação de Medicamentos
4.
Nature ; 589(7841): 214-219, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33408416

RESUMO

Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.

5.
Proc Natl Acad Sci U S A ; 121(34): e2406519121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136995

RESUMO

In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic acid receptor alpha (PML/RARα) fusion protein destroys PML nuclear bodies (NBs), leading to the formation of microspeckles. However, our understanding, largely learned from morphological observations, lacks insight into the mechanisms behind PML/RARα-mediated microspeckle formation and its role in APL leukemogenesis. This study presents evidence uncovering liquid-liquid phase separation (LLPS) as a key mechanism in the formation of PML/RARα-mediated microspeckles. This process is facilitated by the intrinsically disordered region containing a large portion of PML and a smaller segment of RARα. We demonstrate the coassembly of bromodomain-containing protein 4 (BRD4) within PML/RARα-mediated condensates, differing from wild-type PML-formed NBs. In the absence of PML/RARα, PML NBs and BRD4 puncta exist as two independent phases, but the presence of PML/RARα disrupts PML NBs and redistributes PML and BRD4 into a distinct phase, forming PML/RARα-assembled microspeckles. Genome-wide profiling reveals a PML/RARα-induced BRD4 redistribution across the genome, with preferential binding to super-enhancers and broad-promoters (SEBPs). Mechanistically, BRD4 is recruited by PML/RARα into nuclear condensates, facilitating BRD4 chromatin binding to exert transcriptional activation essential for APL survival. Perturbing LLPS through chemical inhibition (1, 6-hexanediol) significantly reduces chromatin co-occupancy of PML/RARα and BRD4, attenuating their target gene activation. Finally, a series of experimental validations in primary APL patient samples confirm that PML/RARα forms microspeckles through condensates, recruits BRD4 to coassemble condensates, and co-occupies SEBP regions. Our findings elucidate the biophysical, pathological, and transcriptional dynamics of PML/RARα-assembled microspeckles, underscoring the importance of BRD4 in mediating transcriptional activation that enables PML/RARα to initiate APL.


Assuntos
Proteínas de Ciclo Celular , Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica , Fatores de Transcrição , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Separação de Fases , Proteínas que Contêm Bromodomínio
6.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359296

RESUMO

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Assuntos
Hematopoiese Clonal , Hematopoese , Humanos , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Envelhecimento/genética , Mutação , Biomarcadores
7.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422020

RESUMO

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Idoso , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Envelhecimento/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Prognóstico
8.
PLoS Genet ; 18(10): e1010455, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206313

RESUMO

Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.


Assuntos
Mariposas , Paladar , Animais , Larva/metabolismo , Paladar/genética , Estricnina/metabolismo , Estricnina/farmacologia , Maxila/metabolismo , Mariposas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Cumarínicos/metabolismo , Cumarínicos/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(49): e2215442119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442117

RESUMO

Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.


Assuntos
Receptores Odorantes , Atrativos Sexuais , Masculino , Animais , Insetos , Comunicação , Feromônios , Drosophila
10.
Proc Natl Acad Sci U S A ; 119(49): e2211429119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442087

RESUMO

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1-G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6-G8, showing high expression of HOXA/B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Transcriptoma , Leucemia Mieloide Aguda/genética , Diferenciação Celular/genética , Células-Tronco Hematopoéticas
11.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
12.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150297

RESUMO

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adjuvantes Imunológicos , Lipossomos , Imiquimode , Neoplasias/patologia , Imunoterapia , Linhagem Celular Tumoral , Fototerapia
13.
EMBO J ; 39(11): e103285, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32301534

RESUMO

RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agregados Proteicos , Sirtuínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Sirtuínas/genética
14.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788820

RESUMO

Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.


Assuntos
Software , Interface Usuário-Computador , Biologia Computacional/métodos , Visualização de Dados , Genômica , Humanos
15.
Blood ; 140(10): 1132-1144, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653587

RESUMO

Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.


Assuntos
Leucemia Promielocítica Aguda , Proteínas Proto-Oncogênicas c-myb , Proteínas WT1 , Cromatina/metabolismo , Mutação em Linhagem Germinativa , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas WT1/genética
16.
Blood ; 140(12): 1390-1407, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35544603

RESUMO

Recurrent MEF2D fusions with poor prognosis have been identified in B-cell precursor ALL (BCP-ALL). The molecular mechanisms underlying the pathogenic function of MEF2D fusions are poorly understood. Here, we show that MEF2D-HNRNPUL1 (MH) knock-in mice developed a progressive disease from impaired B-cell development at the pre-pro-B stage to pre-leukemia over 10 to 12 months. When cooperating with NRASG12D, MH drove an outbreak of BCP-ALL, with a more aggressive phenotype than the NRASG12D-induced leukemia. RNA-sequencing identified key networks involved in disease mechanisms. In chromatin immunoprecipitation-sequencing experiments, MH acquired increased chromatin-binding ability, mostly through MEF2D-responsive element (MRE) motifs in target genes, compared with wild-type MEF2D. Using X-ray crystallography, the MEF2D-MRE complex was characterized in atomic resolution, whereas disrupting the MH-DNA interaction alleviated the aberrant target gene expression and the B-cell differentiation arrest. The C-terminal moiety (HNRNPUL1 part) of MH was proven to contribute to the fusion protein's trans-regulatory activity, cofactor recruitment, and homodimerization. Furthermore, targeting MH-driven transactivation of the HDAC family by using the histone deacetylase inhibitor panobinostat in combination with chemotherapy improved the overall survival of MH/NRASG12D BCP-ALL mice. Altogether, these results not only highlight MH as an important driver in leukemogenesis but also provoke targeted intervention against BCP-ALL with MEF2D fusions.


Assuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Cromatina , DNA/metabolismo , Inibidores de Histona Desacetilases , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Panobinostat , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA
17.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34695195

RESUMO

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fosfolipase C gama/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosfolipase C gama/genética , Proteoma , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma , Translocação Genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38114856

RESUMO

In this paper, we take a historical perspective by going back to Verschaffelt's landmark study published in 1910, in which he found that glucosinolates were used as token stimuli by larvae of Pieris butterflies, specialist feeders on plants in the family Brassicaceae. This classic discovery provided key evidence for Fraenkel (Science 129:1466-1470, 1959) to elaborate on the function of secondary plant substances and for Ehrlich and Raven (Evolution 18:586-608, 1964) to put forward the hypothesis of insect-plant coevolution. The discovery by Schoonhoven (Kon Nederl Akad Wetensch Amsterdam Proc Ser C70:556-568, 1967) of taste neurons highly sensitive to glucosinolates in Pieris brassicae was an important milestone in elucidating the chemosensory basis of host-plant specialization. The molecular basis of glucosinolate sensitivity was elucidated recently (Yang et al., PLoS Genet 17, 2021) paving the way to unravel the evolution of gustatory receptors tuned to glucosinolates that are crucial for host-plant selection of Pieris butterflies. We propose a hypothetical model for the evolution of labeled-line neurons tuned to token stimuli.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Glucosinolatos , Insetos , Larva
19.
Langmuir ; 40(31): 16605-16614, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039962

RESUMO

Despite its significant potential in various disease treatments and diagnostics, microbiotherapy is consistently plagued by multiple limitations ranging from manufacturing challenges to in vivo functionality. Inspired by the strategy involving nonproliferating yet metabolically active microorganisms, we report an intracellular gelation approach that can generate a synthetic polymer network within bacterial cells to solve these challenges. Specifically, poly(ethylene glycol dimethacrylate) (PEGDA, 700 Da) monomers are introduced into the bacterial cytosol through a single cycle of freeze-thawing followed by the initiation of intracellular free radical polymerization by UV light to create a macromolecular PEGDA gel within the bacterial cytosol. The molecular crowding resulting from intracytoplasmic gelation prohibits bacterial division and confers robust resistance to simulated gastrointestinal fluids and bile acids while retaining the ability to secrete functional proteins. Biocompatibility assessments demonstrate that the nondividing gelatinized bacteria are effective in alleviating systemic inflammation triggered by intravenous Escherichia coli injection. Furthermore, the therapeutic efficacy of gelatinized Lactobacillus rhamnosus in colitis mice provides additional support for this approach. Collectively, intracellular gelation indicates a universal strategy to manufacture next-generation live biotherapeutics for advanced microbiotherapy.


Assuntos
Escherichia coli , Polietilenoglicóis , Animais , Camundongos , Escherichia coli/efeitos dos fármacos , Polietilenoglicóis/química , Géis/química , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/induzido quimicamente , Metacrilatos/química
20.
J Exp Biol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39397488

RESUMO

Leptin is a hormone that secreted by adipocytes and may promote energy expenditure by increasing thermogenesis. Our previous studies have shown that thermo-transient receptor potentials (thermo-TRPs) and gut microbiota are associated with thermoregulation in Mongolian gerbils, which are characterized by relative high serum leptin concentrations. Here, we test whether leptin can stimulate non-shivering thermogenesis (NST) in Mongolian gerbils, and whether thermo-TRPs and gut microbiota are involved in leptin-induced thermogenesis. First, gerbils were given acute leptin treatment (ALT) with different doses. Results showed that ALT significantly increased the body temperature of gerbils and change the composition of gut microbiota. Moreover, ALT groups showed a trend towards increased expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Then, we investigated the effect of chronic leptin treatment (CLT) on gerbils. Surprisingly, CLT did not affect gerbils' food intake and body weight, but it significantly increased the body temperature at the end. Besides, CLT did not affect the expression of thermogenic markers in BAT, white adipose tissue (WAT) and skeletal muscle. However, CLT increased the expression of leptin receptors and TRPV2 in the small intestine and affected the composition of gut microbiota. Together, our data suggest leptin may increase body temperature by regulating gut microbiota. In conclusion, the Mongolian gerbils with serum hyperleptin is beneficial for adapting the cold living environments, and TRPV2 and gut microbiota are involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA