Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189334

RESUMO

Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of Bamboo mosaic virus (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein. To study the impact of phosphorylation, we introduced amino acid substitutions at the selected sites. Alanine substitutions were used to prevent phosphorylation, while aspartate substitutions were employed to mimic phosphorylation. Our findings suggest that mimicking phosphorylation at S15, S18 and T58 of TGBp1 might be linked to silencing suppressor activities. The phosphorylated form at these sites exhibits a loss of silencing suppressor activity, leading to reduced viral accumulation in the inoculated leaves. Furthermore, mimicking phosphorylation at residues S15 and S18 could diminish viral accumulation at the single-cell level, while doing so at residue T58 could influence virus movement. However, mimicking phosphorylation at residue S247 does not appear to be relevant to both functions of TGBp1. Overall, our study provides insights into the functional significance of specific phosphorylation sites in BaMV TGBp1, illuminating the regulatory mechanisms involved in virus movement and silencing suppression.


Assuntos
Potexvirus , Fosforilação , Potexvirus/genética , Alanina , Substituição de Aminoácidos
2.
J Exp Bot ; 71(22): 6932-6944, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32926136

RESUMO

NbRabF1, a small GTPase from Nicotiana benthamiana and a homolog of Arabidopsis thaliana Ara6, plays a key role in regulating Bamboo mosaic virus (BaMV) movement by vesicle transport between endosomal membranes. Reducing the expression of NbRabF1 in N. benthamiana by virus-induced gene silencing decreased the accumulation of BaMV, and with smaller infection foci on inoculated leaves, but had no effect in protoplasts. Furthermore, transient expression of NbRabF1 increased the accumulation of BaMV in inoculated leaves. Thus, NbRabF1 may be involved in the cell-to-cell movement of BaMV. The potential acyl modification sites at the second and third amino acid positions of NbRabF1 were crucial for membrane targeting and BaMV accumulation. The localization of mutant forms of NbRabF1 with the GDP-bound (donor site) and GTP-bound (acceptor site) suggested that NbRabF1 might regulate vesicle trafficking between the Golgi apparatus and plasma membrane. Furthermore, GTPase activity could also be involved in BaMV cell-to-cell movement. Overall, in this study, we identified a small GTPase, NbRabF1, from N. benthamiana that interacts with its activation protein NbRabGAP1 and regulates vesicle transport from the Golgi apparatus to the plasma membrane. We suggest that the BaMV movement complex might move from cell to cell through this vesicle trafficking route.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Potexvirus , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/genética , Nicotiana/metabolismo
3.
BMC Plant Biol ; 18(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298668

RESUMO

BACKGROUND: Along with the rapid development of glycomic tools, the study of lectin-carbohydrate interactions has expanded, opening the way for applications in the fields of analytic, diagnostic, and drug delivery. Chitin-binding lectins (CBLs) play roles in immune defense against chitin-containing pathogens. CBLs from species of the Solanaceae family, such as tomato, potato and jimsonweed, display different binding specificities to sugar chains containing poly-N-acetyllactosamine. RESULTS: In this report, CBLs from Solanum integrifolium were isolated by ion exchange chromatography. The fractions showed hemagglutination activity (HA). The recombinant CBL in the 293F cell culture supernatant was able to inhibit the growth of Rhizoctonia solani and Colletotrichum gloeosporioide. Furthermore, the carbohydrate-binding property of CBLs was confirmed with the inhibition of HA. Binding of CBL to Spodoptera frugiperda (sf21) insect cells can partly be inhibited by N-Acetylglucosamine (GlcNAc), which is related to decrease mitochondrial membrane potential of sf21 cells. CONCLUSIONS: The results showed that CBL exhibited antifungal properties and inhibited insect cell growth, which is directly correlated to the lectin-carbohydrate interaction. Further identification and characterization of CBLs will help to broaden their scope of application in plant defense and in biomedical applications.


Assuntos
Colletotrichum/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Inseticidas/farmacologia , Lectinas de Plantas/genética , Rhizoctonia/efeitos dos fármacos , Solanum/genética , Spodoptera/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , Quitina/metabolismo , Cromatografia por Troca Iônica , Larva/crescimento & desenvolvimento , Larva/fisiologia , Lectinas de Plantas/metabolismo , Solanum/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Spodoptera/crescimento & desenvolvimento
4.
Proc Natl Acad Sci U S A ; 111(1): 243-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344309

RESUMO

Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry. Nucleolin (NCL) was identified to be EBNA1 associated. EBNA1's N-terminal 100 aa and NCL's RNA-binding domains were critical for EBNA1/NCL interaction. Lentivirus shRNA-mediated NCL depletion substantially reduced EBNA1 recruitment to oriP DNA, EBNA1-dependent transcription of an EBV oriP luciferase reporter, and EBV genome maintenance in lymphoblastoid cell lines. NCL RNA-binding domain K429 was critical for ATP and EBNA1 binding. NCL overexpression increased EBNA1 binding to oriP and transcription, whereas NCL K429A was deficient. Moreover, NCL silencing impaired lymphoblastoid cell line growth. These experiments reveal a surprisingly critical role for NCL K429 in EBNA1 episome maintenance and transcription, which may be a target for therapeutic intervention.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/fisiologia , Fosfoproteínas/química , Fosfoproteínas/fisiologia , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Transcrição Gênica , Trifosfato de Adenosina/química , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatografia Líquida , Replicação do DNA , Epitopos/química , Regulação da Expressão Gênica , Inativação Gênica , Genoma , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Luciferases/metabolismo , Espectrometria de Massas , Microscopia Confocal , Ligação Proteica , Estrutura Terciária de Proteína , Origem de Replicação , Replicação Viral , Nucleolina
5.
PLoS Pathog ; 8(12): e1003084, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23271972

RESUMO

Epstein-Barr Virus (EBV) is an oncogenic γ-herpesvirus that capably establishes both latent and lytic modes of infection in host cells and causes malignant diseases in humans. Nuclear antigen 2 (EBNA2)-mediated transcription of both cellular and viral genes is essential for the establishment and maintenance of the EBV latency program in B lymphocytes. Here, we employed a protein affinity pull-down and LC-MS/MS analysis to identify nucleophosmin (NPM1) as one of the cellular proteins bound to EBNA2. Additionally, the specific domains that are responsible for protein-protein interactions were characterized as EBNA2 residues 300 to 360 and the oligomerization domain (OD) of NPM1. As in c-MYC, dramatic NPM1 expression was induced in EBV positively infected B cells after three days of viral infection, and both EBNA2 and EBNALP were implicated in the transactivation of the NPM1 promoter. Depletion of NPM1 with the lentivirus-expressed short-hairpin RNAs (shRNAs) effectively abrogated EBNA2-dependent transcription and transformation outgrowth of lymphoblastoid cells. Notably, the ATP-bound state of NPM1 was required to induce assembly of a protein complex containing EBNA2, RBP-Jκ, and NPM1 by stabilizing the interaction of EBNA2 with RBP-Jκ. In a NPM1-knockdown cell line, we demonstrated that an EBNA2-mediated transcription defect was fully restored by the ectopic expression of NPM1. Our findings highlight the essential role of NPM1 in chaperoning EBNA2 onto the latency-associated membrane protein 1 (LMP1) promoters, which is coordinated with the subsequent activation of transcriptional cascades through RBP-Jκ during EBV infection. These data advance our understanding of EBV pathology and further imply that NPM1 can be exploited as a therapeutic target for EBV-associated diseases.


Assuntos
Linfócitos B/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Latência Viral/fisiologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Nucleofosmina , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Montagem de Vírus/fisiologia
6.
Nucleic Acids Res ; 40(10): 4641-52, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22278884

RESUMO

Satellite RNAs associated with Bamboo mosaic virus (satBaMVs) depend on BaMV for replication and encapsidation. Certain satBaMVs isolated from natural fields significantly interfere with BaMV replication. The 5' apical hairpin stem loop (AHSL) of satBaMV is the major determinant in interference with BaMV replication. In this study, by in vivo competition assay, we revealed that the sequence and structure of AHSL, along with specific nucleotides (C(60) and C(83)) required for interference with BaMV replication, are also involved in replication competition among satBaMV variants. Moreover, all of the 5' ends of natural BaMV isolates contain the similar AHSLs having conserved nucleotides (C(64) and C(86)) with those of interfering satBaMVs, suggesting their co-evolution. Mutational analyses revealed that C(86) was essential for BaMV replication, and that replacement of C(64) with U reduced replication efficiency. The non-interfering satBaMV interfered with BaMV replication with the BaMV-C64U mutant as helper. These findings suggest that two cytosines at the equivalent positions in the AHSLs of BaMV and satBaMV play a crucial role in replication competence. The downregulation level, which is dependent upon the molar ratio of interfering satBaMV to BaMV, implies that there is competition for limited replication machinery.


Assuntos
Potexvirus/genética , RNA Satélite/química , Replicação Viral/genética , Citosina/química , Regulação para Baixo , Conformação de Ácido Nucleico , Potexvirus/fisiologia , Protoplastos/virologia , Nicotiana/virologia , Regiões não Traduzidas
7.
Biochem Biophys Res Commun ; 430(3): 1097-102, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23261437

RESUMO

Epstein-Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine-Glycine repeat (RG) domain at amino acid positions 335-360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação da Expressão Gênica , Herpesvirus Humano 4/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Arginina/química , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/química , Glicina/química , Humanos , Metilação , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Proteínas Virais/química
8.
Front Microbiol ; 8: 759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487692

RESUMO

Viruses move intracellularly to their replication compartments, and the newly synthesized viral complexes are transported to neighboring cells through hijacking of the host endomembrane systems. During these processes, numerous interactions occur among viral proteins, host proteins, and the cytoskeleton system. This review mainly focuses on the plant endomembrane network, which may be utilized by Bamboo mosaic virus (BaMV) to move to its replication compartment, and summarizes the host factors that may be directly involved in delivering BaMV cargoes during intracellular movement. Accumulating evidence indicates that plant endomembrane systems are highly similar but exhibit significant variations from those of other eukaryotic cells. Several Nicotiana benthamiana host proteins have recently been identified to participate in the intracellular movement of BaMV. Chloroplast phosphoglycerate kinase, a host protein transported to chloroplasts, binds to BaMV RNAs and facilitates BaMV replication. NbRABG3f is a small GTPase that plays an essential role in vesicle transportation and is also involved in BaMV replication. These two host proteins may deliver BaMV to the replication compartment. Rab GTPase activation protein 1, which switches Rab GTPase to the inactive conformation, participates in the cell-to-cell movement of BaMV, possibly by trafficking BaMV cargo to neighboring cells after replication. By analyzing the host factors involved in the intracellular movement of BaMV and the current knowledge of plant endomembrane systems, a tentative model for BaMV transport to its replication site within plant cells is proposed.

9.
Mol Plant Pathol ; 17(5): 714-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26416342

RESUMO

The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up-regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up-regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato. Knocking down the expression of NbRABG3f using a virus-induced gene silencing technique in a protoplast inoculation assay significantly reduced the accumulation of BaMV. A transiently expressed NbRABG3f protein in N. benthamiana plants followed by BaMV inoculation enhanced the accumulation of BaMV to approximately 150%. Mutants that had the catalytic site mutation (NbRABG3f/T22N) or had lost their membrane-targeting capability (NbRABG3f/ΔC3) failed to facilitate the accumulation of BaMV in plants. Because the Rab GTPase is responsible for vesicle trafficking between organelles, a mutant with a fixed guanosine diphosphate form was used to identify the donor compartment. The use of green fluorescent protein (GFP) fusion revealed that GFP-NbRABG3f/T22N clearly co-localized with the Golgi marker. In conclusion, BaMV may use NbRABG3f to form vesicles derived from the Golgi membrane for intracellular trafficking to deliver unidentified factors to its replication site; thus, both GTPase activity and membrane-targeting ability are crucial for BaMV accumulation at the cell level.


Assuntos
Vírus do Mosaico/fisiologia , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , DNA Complementar/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Regulação para Cima/genética , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
10.
PLoS One ; 8(4): e62907, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23646157

RESUMO

To investigate the plant genes affected by Bamboo mosaic virus (BaMV) infection, we applied a cDNA-amplified fragment length polymorphism technique to screen genes with differential expression. A serine/threonine kinase-like (NbSTKL) gene of Nicotiana benthamiana is upregulated after BaMV infection. NbSTKL contains the homologous domain of Ser/Thr kinase. Knocking down the expression of NbSTKL by virus-induced gene silencing reduced the accumulation of BaMV in the inoculated leaves but not in the protoplasts. The spread of GFP-expressing BaMV in the inoculated leaves is also impeded by a reduced expression of NbSTKL. These data imply that NbSTKL facilitates the cell-to-cell movement of BaMV. The subcellular localization of NbSTKL is mainly on the cell membrane, which has been confirmed by mutagenesis and fractionation experiments. Combined with the results showing that active site mutation of NbSTKL does not change its subcellular localization but significantly affects BaMV accumulation, we conclude that NbSTKL may regulate BaMV movement on the cell membrane by its kinase-like activity. Moreover, the transient expression of NbSTKL does not significantly affect the accumulation of Cucumber mosaic virus (CMV) and Potato virus X (PVX); thus, NbSTKL might be a specific protein facilitating BaMV movement.


Assuntos
Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Potexvirus/fisiologia , Domínio Catalítico/genética , DNA Complementar , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fosforilação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Protoplastos/metabolismo , Nicotiana/genética , Replicação Viral
11.
Virology ; 404(1): 96-105, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20537671

RESUMO

Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny. Using in vitro approaches, we demonstrate that the repaired TBSV RNAs are replication-competent. We propose three different mechanisms for genome repair: initiation of RNA synthesis from internal sequences and addition of nonviral nucleotides by the tombusvirus replicase; and via RNA recombination. The ability to repair cis-sequences makes the tombusvirus genome more flexible, which could be beneficial to increase the virus fitness and adaptation to new hosts.


Assuntos
Genoma Viral , Instabilidade Genômica , RNA Viral/genética , RNA Viral/metabolismo , Deleção de Sequência , Tombusvirus/fisiologia , Replicação Viral , Linhagem Celular , Regiões Promotoras Genéticas , RNA , Saccharomyces cerevisiae/virologia , Nicotiana/virologia , Tombusvirus/genética
12.
PLoS One ; 5(8): e11928, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20689857

RESUMO

BACKGROUND: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. METHODOLOGY/PRINCIPAL FINDINGS: Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or co-inoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (-) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. CONCLUSIONS/SIGNIFICANCE: The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana.


Assuntos
Arabidopsis/virologia , Biologia Computacional , Nicotiana/virologia , Potexvirus/genética , RNA Satélite/metabolismo , RNA Interferente Pequeno/metabolismo , Endorribonucleases/metabolismo , Genoma Viral/genética , Hibridização de Ácido Nucleico , Nucleotídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
13.
J Gen Virol ; 90(Pt 2): 507-518, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141462

RESUMO

The satellite RNA of bamboo mosaic virus (satBaMV) has a single open reading frame encoding a non-structural protein, P20, which facilitates long-distance movement of satBaMV in BaMV and satBaMV co-infected plants. Immunohistochemistry and immunoelectron microscopy revealed that the P20 protein accumulated in the cytoplasm and nuclei in co-infected cells. P20 and the helper virus coat protein (CP) were highly similar in their subcellular localization, except that aggregates of BaMV virions were not labelled with anti-P20 serum. The BaMV CP protein was fairly abundant in mesophyll cells, whilst P20 was more frequently detected in mesophyll cells and vascular tissues. The expression kinetics of the P20 protein was similar to but slightly earlier than that of CP in co-infected Bambusa oldhamii protoplasts and Nicotiana benthamiana leaves. However, satBaMV-encoded protein levels declined rapidly in the late phase of co-infection. During co-infection, in addition to the intact P20, a low-molecular-mass polypeptide of 16 kDa was identified as a P20 C-terminally truncated product; the possible method of generation of the truncated protein is discussed.


Assuntos
Vírus do Mosaico/genética , RNA Satélite/genética , RNA Viral/genética , Proteínas Virais/genética , Fases de Leitura Aberta , Folhas de Planta/virologia , RNA Viral/isolamento & purificação , Sasa/virologia , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas Virais/isolamento & purificação
14.
Virology ; 368(2): 238-48, 2007 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-17688902

RESUMO

Rapid RNA virus evolution is a major problem due to the devastating diseases caused by human, animal and plant-pathogenic RNA viruses. A previous genome-wide screen for host factors affecting recombination in Tomato bushy stunt tombusvirus (TBSV), a small monopartite plant virus, identified Xrn1p 5'-3' exoribonuclease of yeast, a model host, whose absence led to increased appearance of recombinants [Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., Nagy, P.D., (2005). Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102 (30), 10545-10550]. In this paper, we tested if over-expression of Xrn1p in yeast or expression of the analogous Xrn4p cytoplasmic 5'-3' exoribonuclease, which has similar function in RNA degradation in Arabidopsis as Xrn1p in yeast, in Nicotiana benthamiana could affect the accumulation of tombusvirus RNA. We show that over-expression of Xrn1p led to almost complete degradation of TBSV RNA replicons in yeast, suggesting that Xrn1p is involved in TBSV degradation. Infection of N. benthamiana expressing AtXrn4p with Cucumber necrosis tombusvirus (CNV) led to enhanced viral RNA degradation, suggesting that the yeast and the plant cytoplasmic 5'-3' exoribonuclease play similar roles. We also observed rapid emergence of novel CNV genomic RNA variants formed via deletions of 5' terminal sequences in N. benthamiana expressing AtXrn4p. Three of the newly emerging 5' truncated CNV variants were infectious in N. benthamiana protoplasts, whereas one CNV variant caused novel symptoms and moved systemically in N. benthamiana plants. Altogether, this paper establishes that a single plant gene can contribute to the emergence of novel viral variants.


Assuntos
Arabidopsis/enzimologia , Exorribonucleases/metabolismo , Variação Genética , Proteínas de Plantas/metabolismo , RNA Viral/metabolismo , Tombusvirus/classificação , Tombusvirus/genética , Cucumis sativus/virologia , Evolução Molecular , Exorribonucleases/genética , Solanum lycopersicum/virologia , Proteínas de Plantas/genética , Recombinação Genética , Nicotiana/virologia , Tombusvirus/metabolismo , Replicação Viral
15.
J Virol ; 80(6): 2631-40, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501073

RESUMO

RNA viruses of humans, animals, and plants evolve rapidly due to mutations and RNA recombination. A previous genome-wide screen in Saccharomyces cerevisiae, a model host, identified five host genes, including XRN1, encoding a 5'-3' exoribonuclease, whose absence led to an approximately 10- to 50-fold enhancement of RNA recombination in Tomato bushy stunt virus (E. Serviene, N. Shapka, C. P. Cheng, T. Panavas, B. Phuangrat, J. Baker, and P. D. Nagy, Proc. Natl. Acad. Sci. USA 102:10545-10550, 2005). In this study, we found abundant 5'-truncated viral RNAs in xrn1delta mutant strains but not in the parental yeast strains, suggesting that these RNAs might serve as recombination substrates promoting RNA recombination in xrn1delta mutant yeast. This model is supported by data showing that an enhanced level of viral recombinant accumulation occurred when two different 5'-truncated viral RNAs were expressed in the parental and xrn1delta mutant yeast strains or electroporated into plant protoplasts. Moreover, we demonstrate that purified Xrn1p can degrade the 5'-truncated viral RNAs in vitro. Based on these findings, we propose that Xrn1p can suppress viral RNA recombination by rapidly removing the 5'-truncated RNAs, the substrates of recombination, and thus reducing the chance for recombination to occur in the parental yeast strain. In addition, we show that the 5'-truncated viral RNAs are generated by host endoribonucleases. Accordingly, overexpression of the Ngl2p endoribonuclease led to an increased accumulation of cleaved viral RNAs in vivo and in vitro. Altogether, this paper establishes that host ribonucleases and host-mediated viral RNA turnover play major roles in RNA virus recombination and evolution.


Assuntos
Exorribonucleases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Exorribonucleases/genética , Mutação , Doenças das Plantas/virologia , Replicon , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/metabolismo
16.
J Virol ; 80(3): 1231-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415000

RESUMO

RNA recombination is a major process in promoting rapid virus evolution in an infected host. A previous genome-wide screen with the yeast single-gene deletion library of 4,848 strains, representing approximately 80% of all genes of yeast, led to the identification of 11 host genes affecting RNA recombination in Tomato bushy stunt virus (TBSV), a small model plant virus (E. Serviene, N. Shapka, C. P. Cheng, T. Panavas, B. Phuangrat, J. Baker, and P. D. Nagy, Proc. Natl. Acad. Sci. USA 102:10545-10550, 2005). To further test the role of host genes in viral RNA recombination, in this paper, we extended the screening to 800 essential yeast genes present in the yeast Tet-promoters Hughes Collection (yTHC). In total, we identified 16 new host genes that either increased or decreased the ratio of TBSV recombinants to the nonrecombined TBSV RNA. The identified essential yeast genes are involved in RNA transcription/metabolism, in protein metabolism/transport, or unknown cellular processes. Detailed analysis of the effect of the identified yeast genes revealed that they might affect RNA recombination by altering (i) the ratio of the two viral replication proteins, (ii) the stability of the viral RNA, and/or (iii) the replicability of the recombinant RNAs. Overall, this and previous works firmly establish that a set of essential and nonessential host genes could affect TBSV recombination and evolution.


Assuntos
RNA Viral/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virologia , Tombusvirus/genética , Sequência de Bases , Genoma Fúngico , RNA Fúngico/genética , Replicon , Saccharomyces cerevisiae/metabolismo , Tombusvirus/patogenicidade , Tombusvirus/fisiologia , Transcrição Gênica , Replicação Viral
17.
Virology ; 341(1): 107-21, 2005 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16083933

RESUMO

The viral RNA plays multiple roles during replication of RNA viruses, serving as a template for complementary RNA synthesis and facilitating the assembly of the viral replicase complex. These roles are coordinated by cis-acting regulatory elements, such as promoters and replication enhancers (REN). To test if these RNA elements can be used by related viral RNA-dependent RNA polymerases (RdRp), we compared the potential stimulatory effects of homologous and heterologous REN elements on complementary RNA synthesis and template-switching by the tombus- (Cucumber necrosis virus, CNV), carmovirus (Turnip crinkle virus, TCV) and hepatitis C virus (HCV) RdRps in vitro. The CNV RdRp selectively utilized its cognate REN, while discriminating against the heterologous TCV REN. On the contrary, RNA synthesis by the TCV RdRp was stimulated by the TCV REN and the heterologous tombusvirus REN with comparable efficiency. The heterologous REN elements also promoted in vitro template-switching by the TCV and HCV RdRps. Based on these observations, we propose that REN elements could facilitate intervirus recombination and post-recombinational amplification of new recombinant viruses.


Assuntos
Carmovirus/genética , Carmovirus/fisiologia , RNA Viral/biossíntese , RNA Viral/genética , Tombusvirus/genética , Tombusvirus/fisiologia , Sequência de Bases , Elementos Facilitadores Genéticos , Evolução Molecular , Genoma Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Modelos Biológicos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Viral/química , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Especificidade da Espécie , Nicotiana/virologia , Replicação Viral
18.
Proc Natl Acad Sci U S A ; 102(30): 10545-50, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16027361

RESUMO

Rapid evolution of RNA viruses with mRNA-sense genomes is a major concern to health and economic welfare because of the devastating diseases these viruses inflict on humans, animals, and plants. To test whether host genes can affect the evolution of RNA viruses, we used a Saccharomyces cerevisiae single-gene deletion library, which includes approximately 80% of yeast genes, in RNA recombination studies based on a small viral replicon RNA derived from tomato bushy stunt virus. The genome-wide screen led to the identification of five host genes whose absence resulted in the rapid generation of new viral RNA recombinants. Thus, these genes normally suppress viral RNA recombination, but in their absence, hosts become viral recombination "hotbeds." Four of the five suppressor genes are likely involved in RNA degradation, suggesting that RNA degradation could play a role in viral RNA recombination. In contrast, deletion of four other host genes inhibited virus recombination, indicating that these genes normally accelerate the RNA recombination process. A comparison of deletion strains with the lowest and the highest recombination rate revealed that host genes could affect recombinant accumulation by up to 80-fold. Overall, our results demonstrate that a set of host genes have a major effect on RNA virus recombination and evolution.


Assuntos
Evolução Molecular , Genes Bacterianos/genética , Vírus de RNA/genética , Recombinação Genética/genética , Tombusvirus/genética , Primers do DNA , Deleção de Genes , Biblioteca Gênica , Testes Genéticos/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae
19.
J Virol ; 77(22): 12033-47, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14581540

RESUMO

RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses.


Assuntos
Carmovirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/fisiologia , Recombinação Genética/genética , Tombusvirus/genética , Sequência de Bases , Dados de Sequência Molecular , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA