Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(34): e2400985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38693073

RESUMO

Ionic liquids have been widely used to improve the efficiency and stability of perovskite solar cells (PSCs), and are generally believed to passivate defects on the grain boundaries of perovskites. However, few studies have focused on the relevant effects of ionic liquids on intragrain defects in perovskites which have been shown to be critical for the performance of PSCs. In this work, the effect of ionic liquid 1-hexyl-3-methylimidazolium iodide (HMII) on intragrain defects of formamidinium lead iodide (FAPbI3) perovskite is investigated. Abundant {111}c intragrain planar defects in pure FAPbI3 grains are found to be significantly reduced by the addition of the ionic liquid HMII, shown by using ultra-low-dose selected area electron diffraction. As a result, longer charge carrier lifetimes, higher photoluminescence quantum yield, better charge carrier transport properties, lower Urbach energy, and current-voltage hysteresis are achieved, and the champion power conversion efficiency of 24.09% is demonstrated. These observations suggest that ionic liquids significantly improve device performance resulting from the elimination of {111}c intragrain planar defects.

2.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 481-485, 2024 May 15.
Artigo em Zh | MEDLINE | ID: mdl-38802908

RESUMO

OBJECTIVES: To investigate the differences in clinical characteristics among children on prolonged mechanical ventilation (PMV) due to different primary diseases. METHODS: A retrospective analysis was performed on the clinical data of 59 pediatric patients requiring PMV from July 2017 to September 2022. According to the primary disease, they were divided into respiratory disease (RD) group, central nervous system (CNS) group, neuromuscular disease (NMD) group, and other disease group. The four groups were compared in terms of general information, treatment, and outcome. RESULTS: There were significant differences among the four groups in age, body weight, Pediatric Logistic Organ Dysfunction-2 (PELOD-2) score, Pediatric Risk of Mortality III (PRISM Ⅲ) score, analgesic and sedative treatment, nutrition supply, rehabilitation treatment, tracheotomy, successful ventilator weaning, and outcomes (P<0.05). Compared with the RD group, the CNS group and the other disease group had a significantly higher age and a significantly higher proportion of children receiving rehabilitation treatment, and the CNS group had a significantly higher proportion of children receiving tracheotomy (P<0.008). Compared with the other disease group, the CNS group and the NMD group had significantly lower PELOD-2 and PRISM III scores, and the CNS group had a significantly higher proportion of children with successful ventilator weaning and a significantly higher proportion of children who were improved and discharged (P<0.008). CONCLUSIONS: There are differences in clinical characteristics among children receiving PMV due to different etiologies. Most children in the RD group have a younger age, and children in the CNS group have a relatively good prognosis.


Assuntos
Doenças Neuromusculares , Respiração Artificial , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Lactente , Doenças Neuromusculares/terapia , Doenças Neuromusculares/etiologia , Criança , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/terapia , Doenças Respiratórias/terapia , Doenças Respiratórias/etiologia
3.
Small ; 19(36): e2302194, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37118855

RESUMO

The α-phase formamidinium lead tri-iodide (α-FAPbI3 ) has become the most promising photovoltaic absorber for perovskite solar cells (PSCs) due to its outstanding semiconductor properties and astonishing high efficiency. However, the incomplete crystallization and phase transition of α-FAPbI3 substantially undermine the performance and stability of PSCs. In this work, a series of the protic amine carboxylic acid ion liquids are introduced as the precursor additives to efficiently regulate the crystal growth and phase transition processes of α-FAPbI3 . The MA2 Pb3 I8 ·2DMSO phase is inhibited in annealing process, which remarkably optimizes the phase transition process of α-FAPbI3 . It is noted that the functional groups of carboxyl and ammonium passivate the undercoordinated lead ions, halide vacancies, and organic vacancies, eliminating the deleterious nonradiative recombination. Consequently, the small-area devices incorporated with 2% methylammonium butyrate (MAB) and 1.5% n-butylammonium formate (BAFa) in perovskite show champion efficiencies of 25.10% and 24.52%, respectively. Furthermore, the large-area modules (5 cm × 5 cm) achieve PCEs of 21.26% and 19.27% for MAB and BAFa additives, indicating the great potential for commercializing large-area PSCs.

4.
Angew Chem Int Ed Engl ; 62(25): e202302507, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37067196

RESUMO

Perovskite solar cells (PSCs) based on SnO2 electron transport layers have attracted extensive research due to their compelling photovoltaic performance. Herein, we presented an in situ passivation of SnO2 with low-cost hydroxyacid potassium synergist during deposition to optimize the interface carrier extraction and transport for high power conversion efficiency (PCE) and stabilities of PSCs. The orbital overlap of the carboxyl oxygen with the Sn atom alongwith the homogenous nano-particle deposition effectively suppresses the interfacial defects and releases the internal residual strains in the perovskite. Accordingly, a PCE of 24.91 % with a fill factor (FF) up to 0.852 is obtained for in situ passivated devices, which is one of the highest values for SnO2 -based PSCs. Moreover, the unencapsulated device maintained 80 % of its initial PCE at 80 °C over 600 h, 100 % PCE at ambient conditions for 1300 h, and 98 % after one week maximum power point tracking (MPPT) under continuous AM1.5G illumination.


Assuntos
Hidroxiácidos , Estanho , Óxidos , Potássio
5.
Angew Chem Int Ed Engl ; 62(27): e202218174, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951117

RESUMO

Back-contact architectures offer a promising route to improve the record efficiencies of perovskite solar cells (PSCs) by eliminating parasitic light absorption. However, the performance of back-contact PSCs is limited by inadequate carrier diffusion in perovskite. Here, we report that perovskite films with a preferred out-of-plane orientation show improved carrier dynamic properties. With the addition of guanidine thiocyanate, the films exhibit carrier lifetimes and mobilities increased by 3-5 times, leading to diffusion lengths exceeding 7 µm. The enhanced carrier diffusion results from substantial suppression of nonradiative recombination and improves charge collection. Devices using such films achieve reproducible efficiencies reaching 11.2 %, among the best performances for back-contact PSCs. Our findings demonstrate the impact of carrier dynamics on back-contact PSCs and provide the basis for a new route to high-performance back-contact perovskite optoelectronic devices at low cost.

6.
Nat Mater ; 20(1): 55-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33077949

RESUMO

Bandgap instability due to light-induced phase segregation in mixed-halide perovskites presents a major challenge for their future commercial use. Here we demonstrate that photoinduced halide-ion segregation can be completely reversed at sufficiently high illumination intensities, enabling control of the optical bandgap of a mixed-halide perovskite single crystal by optimizing the input photogenerated carrier density. We develop a polaron-based two-dimensional lattice model that rationalizes the experimentally observed phenomena by assuming that the driving force for photoinduced halide segregation is dependent on carrier-induced strain gradients that vanish at high carrier densities. Using illumination sources with different excitation intensities, we demonstrate write-read-erase experiments showing that it is possible to store information in the form of latent images over several minutes. The ability to control the local halide-ion composition with light intensity opens opportunities for the use of mixed-halide perovskites in concentrator and tandem solar cells, as well as in high-power light-emissive devices and optical memory applications.

7.
Chem Soc Rev ; 49(6): 1653-1687, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32134426

RESUMO

Hybrid organic-inorganic perovskite photovoltaics (PSCs) have attracted significant attention during the past decade. Despite the stellar rise of laboratory-scale PSC devices, which have reached a certified efficiency over 25% to date, there is still a large efficiency gap when transiting from small-area devices to large-area solar modules. Efficiency losses would inevitably arise from the great challenges of homogeneous coating of large-area high quality perovskite films. To address this problem, we provide an in-depth understanding of the perovskite nucleation and crystal growth kinetics, including the LaMer and Ostwald ripening models, which advises us that fast nucleation and slow crystallization are essential factors in forming high-quality perovskite films. Based on these cognitions, a variety of thin film engineering approaches will be introduced, including the anti-solvent, gas-assisted and solvent annealing treatments, Lewis acid-base adduct incorporation, etc., which are able to regulate the nucleation and crystallization steps. Upscaling the photovoltaic devices is the following step. We summarize the currently developed scalable deposition technologies, including spray coating, slot-die coating, doctor blading, inkjet printing and vapour-assisted deposition. These are more appealing approaches for scalable fabrication of perovskite films than the spin coating method, in terms of lower material/solution waste, more homogeneous thin film coating over a large area, and better morphological control of the film. The working principles of these techniques will be provided, which direct us that the physical properties of the precursor solutions and surface characteristics/temperature of the substrate are both dominating factors influencing the film morphology. Optimization of the perovskite crystallization and film formation process will be subsequently summarized from these aspects. Additionally, we also highlight the significance of perovskite stability, as it is the last puzzle to realize the practical applications of PSCs. Recent efforts towards improving the stability of PSC devices to environmental factors are discussed in this part. In general, this review, comprising the mechanistic analysis of perovskite film formation, thin film engineering, scalable deposition technologies and device stability, provides a comprehensive overview of the current challenges and opportunities in the field of PSCs, aiming to promote the future development of cost-effective up-scale fabrication of highly efficient and ultra-stable PSCs for practical applications.

8.
Nano Lett ; 20(2): 1240-1251, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31960676

RESUMO

3D/2D hybrid perovskite systems have been intensively investigated to improve the stability of perovskite solar cells (PSCs), whereas undesired crystallization of 2D perovskite during the film formation process could undermine the structural stability of 2D perovskite materials, which causes serious hysteresis of PSCs after aging. This issue is, however, rarely studied. The stability study for 3D/2D hybrid systems to date is all under the one-direction scan, and the lack of detailed information on the hysteresis after aging compromises the credibility of the stability results. In this work, by correlating the hysteresis of the hybrid PSCs with the 2D crystal structure, we find that the prompt 2D perovskite formation process easily induces numerous crystal imperfections and structural defects. These defects are susceptible to humidity attack and decompose the 2D perovskite to insulating long-chain cations and 3D perovskite, which hinder charge transfer or generate charge accumulation. Therefore, a large hysteresis is exhibited after aging the 3D/2D hybrid PSCs in an ambient environment, even though the reverse-scan power conversion efficiency (PCE) is found to be well-preserved. To address this issue, alkali cations, K+ and Rb+, are introduced into the 2D perovskite to exquisitely modulate the crystal formation, which gives rise to a higher crystallinity of 2D perovskite and a better film morphology with fewer defects. We achieved PCE beyond 21% due to the preferable charge transfer process and reduced nonradiative recombination losses. The structural features also bring about impressive moisture stability, which results in the corresponding PSCs retaining 93% of its initial PCE and negligible hysteresis after aging in an ambient atmosphere for 1200 h.

9.
Chemistry ; 26(18): 3896, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32166809

RESUMO

Invited for the cover of this issue is Liqiang Mai and co-workers at Wuhan University of Technology. The image depicts Ni3 Fe alloy nanoparticles encapsulated in N-doped graphene as an efficient bifunctional oxygen electrocatalyst toward rechargeable Zn-air batteries, which is expected to drive the electric vehicle. Read the full text of the article at 10.1002/chem.201904722.

10.
Chemistry ; 26(18): 4044-4051, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31903653

RESUMO

It is extremely desirable to explore high-efficient, affordable and robust oxygen electrocatalysts toward rechargeable Zn-air batteries (ZABs). A 3D porous nitrogen-doped graphene encapsulated metallic Ni3 Fe alloy nanoparticles aerogel (Ni3 Fe-GA1 ) was constructed through a facile hydrothermal assembly and calcination process. Benefiting from 3D porous configuration with great accessibility, high electrical conductivity, abundant active sites, optimal nitrogen content and strong electronic interactions at the Ni3 Fe/N-doped graphene heterointerface, the obtained aerogel showed outstanding catalytic performance toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, it exhibited an overpotential of 239 mV to attain 10 mA cm-2 for OER, simultaneously providing a positive onset potential of 0.93 V within a half-wave potential of 0.8 V for ORR. Accordingly, when employed in the aqueous ZABs, Ni3 Fe-GA1 achieved higher power density and superior reversibility than Pt/C-IrO2 catalyst, making it a potential candidate for rechargeable ZABs.

11.
J Chem Phys ; 153(1): 014706, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640820

RESUMO

In this study, high quality CsxFA1-xPbIyBr3-y perovskite thin films were successfully fabricated by an evaporation/spray-coating hybrid deposition method. In this method, CsI and PbI2 were first deposited via thermal evaporation, and then FAI/FABr mixed solution was sprayed on the CsI/PbI2 substrate to form the CsxFA1-xPbIyBr3-y film. As confirmed by x-ray diffraction, scanning electron microscopy, and atomic force microscopy, a perovskite film with full surface coverage and small surface roughness was obtained. Then, the effect of interface modification materials on the performance of perovskite solar cells (PSCs) was investigated: the devices with the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) interlayer incorporated via vacuum evaporation deposition between SnO2 and perovskite showed remarkably higher performance than those with the C60 interlayer, which was attributed to enhanced charge extraction and reduced recombination at the SnO2/PCBM/perovskite interface. As a result, a high power conversion efficiency (PCE) of 18.21% was obtained for the 0.16 cm2 device. To the best of our knowledge, it is the highest efficiency of CsxFA1-xPbIyBr3-y based PSCs fabricated by the spray technique. Furthermore, we fabricated mini-modules with the size of 5 × 5 cm2 and achieved a PCE of 14.7%.

12.
Small ; 15(49): e1904422, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31651094

RESUMO

The influence of precursor solution properties, fabrication environment, and antisolvent properties on the microstructural evolution of perovskite films is reported. First, the impact of fabrication environment on the morphology of methyl ammonium lead iodide (MAPbI3 ) perovskite films with various Lewis-base additives is reported. Second, the influence of antisolvent properties on perovskite film microstructure is investigated using antisolvents ranging from nonpolar heptane to highly polar water. This study shows an ambient environment that accelerates crystal growth at the expense of nucleation and introduces anisotropies in crystal morphology. The use of antisolvents enhances nucleation but also influences ambient moisture interaction with the precursor solution, resulting in different crystal morphology (shape, size, dispersity) in different antisolvents. Crystal morphology, in turn, dictates film quality. A homogenous spherulitic crystallization results in pinhole-free films with similar microstructure irrespective of processing environment. This study further demonstrates propyl acetate, an environmentally benign antisolvent, which can induce spherulitic crystallization under ambient environment (52% relative humidity, 25 °C). With this, planar perovskite solar cells with ≈17.78% stabilized power conversion efficiency are achieved. Finally, a simple precipitation test and in situ crystallization imaging under an optical microscope that can enable a facile a priori screening of antisolvents is shown.

13.
Angew Chem Int Ed Engl ; 58(9): 2893-2898, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30456831

RESUMO

Mixed organolead halide perovskites (MOHPs), CH3 NH3 Pb(Brx I1-x )3 , have been shown to undergo phase segregation into iodide-rich domains under illumination, which presents a major challenge to their development for photovoltaic and light-emitting devices. Recent work suggested that phase-segregated domains are localized at crystal boundaries, driving investigations into the role of edge structure and the growth of larger crystals with reduced surface area. Herein, a method for growing large (30×30×1 µm3 ) monocrystalline MAPb(Brx I1-x )3 single crystals is presented. The direct visualization of the growth of nanocluster-like I-rich domains throughout the entire crystal revealed that grain boundaries are not required for this transformation. Narrowband fluorescence imaging and time-resolved spectroscopy provided new insight into the nature of the phase-segregated domains and the collective impact on the optoelectronic properties.

14.
Small ; : e1800682, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29952060

RESUMO

In the growing list of 2D semiconductors as potential successors to silicon in future devices, metal-halide perovskites have recently joined the family. Unlike other conversional 2D covalent semiconductors such as graphene, transition metal dichalcogenides, black phosphorus, etc., 2D perovskites are ionic materials, affording many distinct properties of their own, including high photoluminescence quantum efficiency, balanced large exciton binding energy and oscillator strength, and long carrier diffusion length. These unique properties make 2D perovskites potential candidates for optoelectronic and photonic devices such as solar cells, light-emitting diodes, photodetectors, nanolasers, waveguides, modulators, and so on, which represent a relatively new but exciting and rapidly expanding area of research. In this Review, the recent advances in emerging 2D metal-halide perovskites and their applications in the fields of optoelectronics and photonics are summarized and insights into the future direction of these fields are offered.

15.
Langmuir ; 34(38): 11316-11324, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30184434

RESUMO

Now that there are various routes to prepare superhydrophobic surfaces for self-cleaning, anti-icing, liquid collecting, etc., attentions are moving toward low-cost upscaling of routes and increasing the reliability for actual applications. However, the required micro-nano structures for superhydrophobicity are light scattering and very vulnerable to abrasion. This intrinsically conflicts with the transparency and durability of superhydrophobic glass, which are the major barriers for its commercialization. In this study, we present a novel sequentially reinforced additive coating (SRAC) process to realize robust and transparent micro-nano structured film with tough intergranular sintering. A benign aqueous-based ink with poly(furfuryl alcohol) (PFA) and silica species is carefully designed and sprayed on glass to enable self-phase separation and morphology construction. The coatings reach the static contact angle (SCA) for water over 166° and withstand a 6H pencil scratching, the cross-cut test, and sand abrasion. Moreover, we also performed a 90 day outdoor performance test and the glass maintained superhydrophobicity with an SCA of 154°. These results provide a low-cost waterborne ink formula, and the high throughput and upscalable SRAC process could be a convenient technology for the fabrication of large area, robust superhydrophobic coatings.

16.
Nature ; 539(7630): 488-489, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882991
17.
Angew Chem Int Ed Engl ; 56(41): 12486-12491, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28597547

RESUMO

Organo-lead halide perovskites (OHPs) have recently emerged as a new class of exceptional optoelectronic materials, which may find use in many applications, including solar cells, light emitting diodes, and photodetectors. More complex applications, such as lasers and electro-optic modulators, require the use of monocrystalline perovskite materials to reach their ultimate performance levels. Conventional methods for forming single crystals of OHPs like methylammonium lead bromide (MAPbBr3 ) afford limited control over the product morphology, rendering the assembly of defined microcavity nanostructures difficult. We overcame this by synthesizing for the first time (MA)[PbBr3 ]⋅DMF (1), and demonstrating its facile transformation into monocrystalline MAPbBr3 microplatelets. The MAPbBr3 microplatelets were tailored into waveguide based photonic devices, of which an ultra-low propagation loss of 0.04 dB µm-1 for a propagation distance of 100 µm was demonstrated. An efficient active electro-optical modulator (AEOM) consisting of a MAPbBr3 non-linear arc waveguide was demonstrated, exhibiting a 98.4 % PL intensity modulation with an external voltage of 45 V. This novel synthetic approach, as well as the demonstration of effective waveguiding, will pave the way for developing a wide range of photonic devices based on organo-lead halide perovskites.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(2): 203-207, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-28202121

RESUMO

The infant (a girl aged 6 months) was admitted to the hospital because of oliguria and acute renal dysfunction. The laboratory examination results showed serious metabolic acidosis and increased blood urea nitrogen and serum creatinine levels. The patient continued to be anuric after 10 days of treatment with continuous renal replacement therapy (CRRT). she died a day later. The family history showed that the patient's sister died of acute renal failure 6 months after birth. The genomic sequencing results showed AGXT mutation in the patient and confirmed the diagnosis of primary hyperoxaluria type 1 (PH1). Her parents were heterozygous carriers. PH1 should be considered when the children have abnormal renal function or recurrent renal calculi or have a family history of these symptoms. AGXT gene analysis is an important method for PH1 diagnosis.


Assuntos
Injúria Renal Aguda/etiologia , Hiperoxalúria Primária/complicações , Oligúria/etiologia , Feminino , Humanos , Lactente , Mutação , Transaminases/genética
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(10): 1104-1108, 2017 Oct.
Artigo em Zh | MEDLINE | ID: mdl-29046209

RESUMO

A boy aged 11 years was admitted due to intermittent weakness and difficulty in walking for 6 years, and hepatomegaly, glycopenia and unconsciousness for 4 years. The laboratory examinations showed severe metabolic acidosis, hypoglycemia, and abnormal liver function. CT scan showed marked liver enlargement with fat density shadow. The boy was given fluid infusion, correction of acidosis, intravenous injection of glucose, L-carnitine, compound vitamin B, and coenzyme Q10, but he was in a persistent coma and it was difficult to correct refractory metabolic acidosis and hypoglycemia. The boy died. Blood and urinary organic acid screening and gene detection confirmed that the boy had late-onset glutaric aciduria type II (GAIIc) caused by electron-transferring-flavoprotein dehydrogenase (ETFDH) gene defect. GAIIc is an inherited metabolic disease with a low incidence, resulting in a high misdiagnosis rate. GAIIc should be considered for children with recurrent weakness or reduced activity endurance, hypoglycemia, and marked liver enlargement with abnormal liver function. Urinary organic acid analysis and blood tandem mass spectrometry can help with the early diagnosis of GAIIc, and ETFDH gene analysis helps to make a confirmed diagnosis.


Assuntos
Hepatomegalia/etiologia , Hipoglicemia/etiologia , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Debilidade Muscular/etiologia , Criança , Humanos , Masculino
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 19(8): 908-912, 2017 Aug.
Artigo em Zh | MEDLINE | ID: mdl-28774367

RESUMO

OBJECTIVE: To investigate the myocardial protective effect of L-carnitine in children with hand, foot and mouth disease (HFMD) caused by Coxsackie A16 virus and possible mechanisms. METHODS: A total of 60 HFMD children with abnormal myocardial enzyme after Coxsackie A16 virus infection were enrolled and randomly divided into L-carnitine group and fructose-1,6-diphosphate group (fructose group), with 30 children in each group. The two groups were given L-carnitine or fructose diphosphate in addition to antiviral and heat clearance treatment. Another 30 healthy children who underwent physical examination were enrolled as control group. The changes in myocardial zymogram, malondialdehyde (MDA), superoxide dismutase (SOD), and apoptosis factors sFas and sFasL after treatment were compared between groups. RESULTS: There was no significant difference in treatment response between the L-carnitine group and the fructose group (P>0.05). One child in the fructose group progressed to critical HFMD, which was not observed in the L-carnitine group. Before treatment, the L-carnitine group and the fructose group had significantly higher indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significantly lower level of SOD than the control group (P<0.05), while there were no significant differences in these indices between the L-carnitine group and the fructose group (P>0.05). After treatment, the L-carnitine group and the fructose group had significant reductions in the indices of myocardial zymogram and levels of MDA, sFas, and sFasL and a significant increase in the level of SOD (P<0.05); the fructose group had a significantly higher level of creatine kinase (CK) than the control group and the L-carnitine group, and there were no significant differences in other myocardial enzyme indices, MDA, sFas, and sFasL between the L-carnitine group and the fructose group, as well as between the L-carnitine and fructose groups and the control group (P>0.05). SOD level was negatively correlated with aspartate aminotransferase, lactate dehydrogenase (LDH), CK, and creatine kinase-MB (CK-MB) (r=-0.437, -0.364, -0.397, and -0.519 respectively; P<0.05), and MDA level was positively correlated with LDH and CK-MB (r=0.382 and 0.411 respectively; P<0.05). CONCLUSIONS: L-carnitine exerts a good myocardial protective effect in children with HFMD caused by Coxsackie A16 virus, possibly by clearing oxygen radicals and inhibiting cardiomyocyte apoptosis.


Assuntos
Carnitina/uso terapêutico , Infecções por Coxsackievirus/complicações , Doença de Mão, Pé e Boca/tratamento farmacológico , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Pré-Escolar , Feminino , Doença de Mão, Pé e Boca/etiologia , Doença de Mão, Pé e Boca/metabolismo , Humanos , Lactente , Masculino , Malondialdeído/análise , Miocárdio/patologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA