RESUMO
Vanillin, as a promising aromatic aldehyde, possesses worthy structural and bioactive properties useful in the design of novel sustainable polymeric materials. Its versatility and structural similarity to terephthalic acid (TPA) can lead to materials with properties similar to conventional poly(ethylene terephthalate) (PET). In this perspective, a symmetrical dimethylated dialkoxydivanillic diester monomer (DEMV) derived from vanillin was synthesized via a direct-coupling method. Then, a series of poly(ether-ester)s were synthesized via melt-polymerization incorporating mixtures of phenyl/phenyloxy diols (with hydroxyl side-chains in the 1,2-, 1,3- and 1,4-positions) and a cyclic diol, 1,4-cyclohexanedimethanol (CHDM). The polymers obtained had high molecular weights (Mw = 5.3-7.9 × 104 g.mol-1) and polydispersity index (D) values of 1.54-2.88. Thermal analysis showed the polymers are semi-crystalline materials with melting temperatures of 204-240 °C, and tunable glass transition temperatures (Tg) of 98-120 °C. Their 5% decomposition temperature (Td,5%) varied from 430-315 °C, which endows the polymers with a broad processing window, owing to their rigid phenyl rings and trans-CHDM groups. These poly(ether-ester)s displayed remarkable impact strength and satisfactory gas barrier properties, due to the insertion of the cyclic alkyl chain moieties. Ultimately, the synergistic influence of the ester and ether bonds provided better control over the behavior and mechanism of in vitro degradation under passive and enzymatic incubation for 90 days. Regarding the morphology, scanning electron microscopy (SEM) imaging confirmed considerable surface degradation in the polymer matrices of both polymer series, with weight losses reaching up to 35% in enzymatic degradation, which demonstrates the significant influence of ether bonds for biodegradation.
Assuntos
Materiais Biocompatíveis , Éter , Materiais Biocompatíveis/química , Ésteres , Éteres , Polimerização , Polímeros/químicaRESUMO
In this work, the feasibility of replacing petroleum-based poly(ethylene terephthalate) (PET) with fully bio-based copolyesters derived from dimethyl 2,5-thiophenedicarboxylate (DMTD), dimethyl 2,5-dimethoxyterephthalate (DMDMT), and polysaccharide-derived 1,6-hexanediol (HDO) was investigated. A systematic study of structure-property relationship revealed that the properties of these poly(thiophene-aromatic) copolyesters (PHS(20-90)) can be tailored by varying the ratio of diester monomers in the reaction, whereby an increase in DMTD content noticeably shortened the reaction time in the transesterification step due to its higher reactivity as compared with DMDMT. The copolyesters had weight-average molar masses (Mw) between 27,500 and 38,800 g/mol, and dispersity D of 2.0-2.5. The different polarity and stability of heterocyclic DMTD provided an efficient mean to tailor the crystallization ability of the copolyesters, which in turn affected the thermal and mechanical performance. The glass transition temperature (Tg) could be tuned from 70-100 °C, while the tensile strength was in a range of 23-80 MPa. The obtained results confirmed that the co-monomers were successfully inserted into the copolyester chains. As compared with commercial poly(ethylene terephthalate), the copolyesters displayed not only enhanced susceptibility to hydrolysis, but also appreciable biodegradability by lipases, with weight losses of up to 16% by weight after 28 weeks of incubation.
Assuntos
Ácidos/química , Poliésteres/síntese química , Polissacarídeos/química , Tiofenos/síntese química , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Tiofenos/químicaRESUMO
Inorganic nanosheets are endowed with many two-dimensional (2D) morphological features including ultra-high specific surface area, ultra-thin thickness, easy functionalization, and so on. They push forward an immense influence on effective cancer diagnosis and therapy, overcoming the inherent limitations of traditional treatment methods. However, long-term toxicity and poor biocompatibility are the critical issues for most inorganic nanosheets, which hinder their further oncological applications and clinical translations. Muscovite, also named white mica (WM), an aluminosilicate, is a major component of traditional Chinese medicine, which can be exfoliated into 2D nanosheets and expected to be a potential drug carrier. In this study, WM powder was exfoliated to prepare WM nanosheets (WMNs) through a polyamine intercalation method. In addition, doxorubicin hydrochloride (Dox) was loaded to WMNs via physical adsorption and electrostatic interaction to prepare Dox-loaded WMNs (Dox@WMNs). Then, we studied that Dox@WMNs released Dox in phosphate buffer saline. We also studied the cellular uptake and cytotoxicity of Dox@WMNs in vitro. The results illustrated that Dox@WMNs cumulatively released Dox much faster and more at acidic pH (6.0 and 4.6) compared with that at physiological pH. In addition, WMNs showed selective cytotoxicity. Within a certain concentration range, WMNs were cytotoxic to Hela cells but non-cytotoxic to RAW 264.7 cells. Compared with cytotoxicity at pH 7.4, the cytotoxicity of Dox@WMNs was significantly enhanced at pH 6.4 and 4.6. WMNs mainly promoted the immunostimulatory polarization of RAW 264.7 cells into M1 macrophages.
Assuntos
Doxorrubicina , Portadores de Fármacos , Silicatos de Alumínio/toxicidade , Doxorrubicina/toxicidade , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Concentração de Íons de HidrogênioRESUMO
Targeted protein degradation technologies (e.g., PROTACs) that can selectively degrade intracellular protein are an emerging class of promising therapeutic modalities. Herein, we describe the conjugation of photosensitizers and protein ligands (PS-Degrons), as an activable targeted protein degradation platform. PS-Degrons are capable of degrading protein of interest via light-triggered 1O2, which is orthogonal and complementary to existing technologies. This generalizable platform allows controllable knockdown of the target protein with high spatiotemporal precision. Our lead compound PSDalpha induces a complete degradation of human estrogen receptor α (ERα) under visible light. The high degrading ERα efficacy of PSDalpha enables an excellent anti-proliferation performance on MCF-7 cells. Our results establish a modular strategy for the controllable degradation of target proteins, which can hopefully overcome the systemic toxicity in clinical treatment of PROTACs. We anticipate that PS-Degrons would open a new chapter for biochemical research and for the therapeutics.