Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862484

RESUMO

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Assuntos
Radiação Cósmica , Voo Espacial , Animais , Humanos , Camundongos , Radiação Cósmica/efeitos adversos , Ratos , Masculino , Rim/patologia , Rim/efeitos da radiação , Rim/metabolismo , Nefropatias/patologia , Nefropatias/etiologia , Ausência de Peso/efeitos adversos , Astronautas , Camundongos Endogâmicos C57BL , Proteômica , Feminino , Marte , Simulação de Ausência de Peso/efeitos adversos
2.
Stem Cell Res ; 56: 102513, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517335

RESUMO

CDKN1A/P21 is a potent inhibitor of cell cycle progression and its overexpression is thought to be associated with inhibition of normal bone regenerative osteogenesis during spaceflight. To test whether CDKN1A/P21 regulates osteogenesis in response to mechanical loading we studied cyclic stretch versus static culture of Cdkn1a-/- (null) or wildtype primary mouse bone marrow osteoprogenitors during 21-day ex-vivo mineralization assays. Cyclically stretched Cdkn1a-/- cells are 3.95-fold more proliferative than wildtype, while static Cdkn1a-/- cells show a 2.50-fold increase. Furthermore, stage-specific single cell RNAseq analyses show expression of Cdkn1a is strongly suppressed by cyclic stretch in early and late osteoblasts, and minimally in the progenitor population. Lastly, both stretch and/or Cdkn1a deletion cause population shift from osteoprogenitors to osteoblasts, also indicating increased differentiation. Collectively, our results support the hypothesis that Cdkn1a constitutively plays a mechano-reversible anti-proliferative role during osteogenesis and suggests a new molecular target to counter regenerative deficits caused by disuse.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Osteoblastos , Osteogênese/genética
3.
iScience ; 23(12): 101771, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376971

RESUMO

Space radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (<3 KeV/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.06 Gy making mixed ion space radiation more potent. Candidates for bystander transmission are microRNAs (miRNAs), and analysis on miRNA-seq data from irradiated mice shows that angiogenesis would in theory be downregulated. Further analysis of three previously identified miRNAs showed downregulation of their targets associated with angiogenesis and confirmed their involvement in angiogenesis pathways and increased health risks associated with cardiovascular disease. Finally, synthetic molecules (antagomirs) designed to inhibit the predicted miRNAs were successfully used to reverse the inhibition of angiogenesis.

4.
iScience ; 23(12): 101747, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376970

RESUMO

Spaceflight missions can cause immune system dysfunction in astronauts with little understanding of immune outcomes in deep space. This study assessed immune responses in mice following ground-based, simulated deep spaceflight conditions, compared with data from astronauts on International Space Station missions. For ground studies, we simulated microgravity using the hindlimb unloaded mouse model alone or in combination with acute simulated galactic cosmic rays or solar particle events irradiation. Immune profiling results revealed unique immune diversity following each experimental condition, suggesting each stressor results in distinct circulating immune responses, with clear consequences for deep spaceflight. Circulating plasma microRNA sequence analysis revealed involvement in immune system dysregulation. Furthermore, a large astronaut cohort showed elevated inflammation during low-Earth orbit missions, thereby supporting our simulated ground experiments in mice. Herein, circulating immune biomarkers are defined by distinct deep space irradiation types coupled to simulated microgravity and could be targets for future space health initiatives.

5.
Cell Rep ; 33(10): 108448, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33242410

RESUMO

We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.


Assuntos
MicroRNA Circulante/genética , MicroRNAs/genética , Ausência de Peso/efeitos adversos , Animais , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos , Análise de Sequência de RNA/métodos , Voo Espacial , Transcriptoma/genética , Simulação de Ausência de Peso/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA