Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922247

RESUMO

Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Espermina/metabolismo , Animais , Humanos , Masculino , Neoplasias da Próstata/metabolismo
2.
Breast Cancer Res Treat ; 157(2): 211-215, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27125668

RESUMO

Recently, RECQL was reported as a new breast cancer susceptibility gene. RECQL belongs to the RECQ DNA helicase family which unwinds double strand DNA and involved in the DNA replication stress response, telomere maintenance and DNA repair. RECQL deficient mice cells are prone to spontaneous chromosomal instability and aneuploidy, suggesting a tumor-suppressive role of RECQL in cancer. In this study, RECQL gene mutation screening was performed on 1110 breast cancer patients who were negative for BRCA1, BRCA2, TP53 and PTEN gene mutations and recruited from March 2007 to June 2015 in the Hong Kong Hereditary and High Risk Breast Cancer Program. Four different RECQL pathogenic mutations were identified in six of the 1110 (0.54 %) tested breast cancer patients. The identified mutations include one frame-shift deletion (c.974_977delAAGA), two splicing site mutations (c.394+1G>A, c.867+1G>T) and one nonsense mutation (c.796C>T, p.Gln266Ter). Two of the mutations (c.867+1G>T and p.Gln266Ter) were seen in more than one patients. This study provides the basis for existing of pathogenic RECQL mutations in Southern Chinese breast cancer patients. The significance of rare variants in RECQL gene in the estimation of breast cancer risk warranted further investigation in larger cohort of patients and in other ethnic groups.


Assuntos
Povo Asiático/genética , Neoplasias da Mama/genética , Mutação , RecQ Helicases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Linhagem , Análise de Sequência de DNA/métodos , Adulto Jovem
3.
BMC Cancer ; 16(1): 887, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842518

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) remains a poor prognostic factor for breast cancer since no effective targeted therapy is readily available. Our previous studies confirmed miR-199a-5p is a TNBC-specific circulating biomarker, however, its functional roles in breast cancer is largely unknown. Thus, we investigated the functional implication of miR-199a-5p in TNBC and its potential underlying mechanisms. METHODS: MTT assay was performed to investigate the cell proliferation after transient transfection of miR-199a-5p in MDA-MB-231 cell line, followed by cell cycle analysis. Transwell invasion assay and wound healing assay were used to study the invasion and migration ability respectively. To further investigate the stemness-related characteristics of miR-199a-5p in breast cancer cells, single-cell clonogenic assay and aldehyde dehydrogenase (ALDH) assay were performed. 32 normal and 100 breast cancer patients' plasma were recruited to identify the potential circulating markers by qPCR. RESULTS: Cell proliferation assay revealed significant inhibition after miR-199a-5p ectopic expression (p < 0.0001), as a result of decreased S phase (p = 0.0284), increased G0/G1 phase (p = 0.0260) and apoptosis (p = 0.0374). Invasiveness (p = 0.0005) and wound healing ability were also decreased upon miR-199a-5p overexpression. It significantly altered EMT-related genes expression, namely CDH1, ZEB1 and TWIST. Single-cell clonogenic assay showed decreased colonies in miR-199a-5p (p = 0.0182). Significant downregulation (p = 0.0088) and inhibited activity (p = 0.0390) of ALDH was observed in miR-199a-5p. ALDH1A3, which is the dominant isoform of ALDH, is significantly upregulated in breast cancer plasma especially in TNBC (p = 0.0248). PIK3CD was identified as a potential downstream target of miR-199a-5p. CONCLUSIONS: Taken together, we unraveled, for the first time, the tumor-suppressive role of miR-199a-5p in TNBC, which attributed to EMT and cancer stemness properties, providing a novel therapeutic options towards this aggressive disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Xenoenxertos , Humanos , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , Fator de Crescimento Transformador beta2/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Am J Transl Res ; 14(3): 2021-2036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422914

RESUMO

MiR-199a-3p was previously predicted to target tumor suppressor gene BRCA1, which has been linked to cancer onset and therapeutic response. In this study, the effects of miR-199a-3p-mediated BRCA1 dysfunction on triple-negative breast cancer (TNBC) progression and chemosensitivity were assessed. The association between miR-199a-3p and BRCA1 expression was examined in TNBC tumors and verified with luciferase reporter and protein assays. Tumorigenic functions of miR-199a-3p in TNBC cells were investigated by cell proliferation, clonogenic and migration assays. The sensitivities to chemotherapeutic drugs were tested with cisplatin and PARP inhibitor (veliparib) treatments. Mouse xenograft model was used to examine the effects of miR-199a-3p on tumor growth and drug response in vivo. MiR-199a-3p was shown to directly target BRCA1 in TNBC cells, resulting its downregulation and reduced luciferase reporter activity mediated by BRCA1 3'-UTR. Ectopic miR-199a-3p in TNBC cells exerted inhibitory effects on cell proliferation, migration and xenograft tumor growth. Moreover, miR-199a-3p was shown to reverse cisplatin-resistance and sensitize TNBC cells to veliparib, which might be due to repressed DNA repair ability and induced cell apoptosis. Our results demonstrated the tumor suppressive effects of miR-199a-3p on TNBC and induction on chemotherapeutic sensitivities, which were correlated with BRCA1 gene dysfunction. These findings may provide insights into the potential prognostic and therapeutic values of miR-199a-3p in patients with TNBC.

5.
Am J Cancer Res ; 10(1): 211-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064162

RESUMO

During tumorigenesis and metastasis, integrins regulate localization and activity of proteolytic enzymes that remodel the extracellular matrix. Previous studies have demonstrated blocking of αVß3 to effectively inhibit proliferation, angiogenesis, and the survival of various cancer cell types. However, little is known about the functional role of the integrin subunit alpha-V gene (ITGAV) in metastatic breast cancer. In this study, ITGAV knockdown was used to identify the molecular mechanism by which ITGAV promotes tumorigenesis, metastasis, proliferation, invasion, and cellular self-renewal. The effectiveness of an ITGAV antagonist, cilengitide, for breast cancer treatment was investigated in vivo. Analysis of publicly available data demonstrated that overexpression of ITGAV was associated with poor relapse free survival of breast cancer patients. Silencing of ITGAV inhibited cell proliferation, invasion, and self-renewal of breast cancer cell lines by altering expression of BCL2 and PXN. The use of cilengitide significantly reduced lung metastasis in a metastatic breast cancer animal model. In conclusion, overexpression of ITGAV contributes to breast cancer metastasis through upregulation of PXN. Targeting ITGAV is a potential treatment for metastatic breast cancer as well as primary breast tumors with high ITGAV expression. ITGAV expression levels may be useful predictors of patient treatment and outcome responses.

6.
Biomolecules ; 10(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365569

RESUMO

It is well-established that tumor-associated macrophages (TAMs) play an important role in breast cancer development. Accumulating evidence suggested that human cathelicidin antimicrobial protein (CAMP), which is mainly expressed in host defense cells such as macrophages, is crucial not only in combating microorganisms but also promoting tumor growth. Here we report the interaction of CAMP with TAMs in breast cancer. CAMP expression was upregulated in cancer tissues and in the circulation of breast cancer patients. Surgical removal of tumor decreased CAMP peptide serum level. Knockdown of CAMP decreased cell proliferation and migration/invasion ability in breast cancer cells. CAMP expression was altered during macrophage M1/M2 polarization and was expressed predominantly in M2 phenotype. In addition, breast cancer cells co-cultured with macrophages upregulated CAMP expression and also increased cancer cell viability. Xenograft tumors reduced significantly upon CAMP receptor antagonist treatment. Our data implicated that CAMP confers an oncogenic role in breast cancer and plays an important role in the tumor microenvironment between TAMs and breast cancer cells, and blocking the interaction between them would provide a novel therapeutic option for this malignant disease.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Adulto , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Células THP-1 , Catelicidinas
7.
Am J Cancer Res ; 10(9): 2865-2877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042622

RESUMO

Cellular metabolism reprogramming is a hallmark in cancers including breast cancer. Switching off the glycolytic energy in cancer has been indicated as one of the anti-cancer strategies. Aberrant haptoglobin (HP) expression has been shown to cause metabolic dysfunction and implicated in different malignancies. However, its roles in breast cancer and glycolysis remain elusive. Here, we reported HP was upregulated in breast cancer tissues and the circulation. HP conferred oncogenic roles by regulating cell cycle progression and apoptosis in breast cancer cells. Further analysis identified the correlation between HP and glycolytic enzymes such as glucose-6-phosphate isomerase (GPI) and hexokinase (HK). Glycolytic activities were altered upon HP knockdown which were confirmed by glucose uptake and LDH activity assays. GPI was found to be downstream effector of HP while knockdown of GPI led to decreased glycolytic activity and restored oxygen consumption. GPI silencing decreased cell migration/invasion ability and sensitized breast cancer cells to chemo-drug. Moreover, animal study suggested inhibition of both HP and GPI significantly impeded tumor growth in mice. Collectively, we report for the first time the oncogenic roles of HP, at least partially, through regulating glycolysis and its downstream effector, GPI, contributes in maintaining EMT and chemoresistance in breast cancer.

8.
J Mol Diagn ; 22(4): 544-554, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068069

RESUMO

Differences in the mutation spectrum across ethnicities suggest the importance of identifying genes in addition to common high penetrant genes to estimate the associated breast cancer risk in China. A total of 1338 high-risk breast cancer patients who tested negative for germline BRCA1, BRCA2, TP53, and PTEN mutations between 2007 and 2017 were selected from the Hong Kong Hereditary Breast Cancer Family Registry. Patient samples were subjected to next-generation DNA sequencing using a multigene panel (Color Genomics). All detected pathogenic variants were validated by bidirectional DNA sequencing. The sequencing data were coanalyzed by a bioinformatics pipeline developed in-house. Sixty-one pathogenic variants (4.6%) were identified in this cohort in 11 cancer predisposition genes. Most carriers (77.1%) had early onset of breast cancer (age <45 years), 32.8% had family members with breast cancer, and 11.5% had triple-negative breast cancer. The most common mutated genes were PALB2 (1.4%), RAD51D (0.8%), and ATM (0.8%). A total of 612 variants of unknown significance were identified in 494 patients, and 87.4% of the variants of unknown significance were missense mutations. Pathogenic variants in cancer predisposition genes beyond BRCA1, BRCA2, TP53, and PTEN were detected in an additional 4.6% of patients using the multigene panel. PALB2 (1.4%) and RAD51D (0.8%) were the most commonly mutated genes in patients who tested mutation negative by a four-gene panel.


Assuntos
Biomarcadores Tumorais , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Proteína BRCA1/genética , Proteína BRCA2/genética , Biologia Computacional/métodos , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Genótipo , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , PTEN Fosfo-Hidrolase/genética , Prevalência , Adulto Jovem
9.
Am J Cancer Res ; 10(9): 2919-2932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042626

RESUMO

Targeted therapeutic agents such as poly (ADP-ribose) polymerases (PARP) inhibitors have emerged in treating cancers associated with germline BRCA mutations. Recently studies demonstrated the effectiveness of PARP inhibitors in treating patients with somatic BRCA mutations. Somatic mutations in 122 Chinese breast or ovarian cancer patients without BRCA, PTEN and TP53 mutations were screened using multigene sequencing panel. The five most frequent pathogenic or likely pathogenic mutated genes identified in breast cancer patients were PIK3CA (28.6%), TP53 (16.9%), MAP3K1 (14.3%), GATA3 (14.3%) and PTEN (5.2%). The five most frequently mutated genes identified in ovarian patients were TP53 (52.9%), KRAS (23.5%) and PIK3CA (11.8%), BRCA1 (5.9%) and RB1 (5.9%). Somatic PIK3CA and TP53 mutations were common events in both germline BRCA-negative breast and ovarian cancer patients. In contrast, somatic screening of BRCA mutations in BRCA-negative breast cancer patients has limited value. The results highlight the benefit of somatic testing to guide future research directions on other targeted therapies for breast and ovarian malignancies.

10.
Surg Oncol ; 31: 46-53, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536927

RESUMO

Acetylcholine (ACh) was first identified as a classic neuromodulator and transmit signals through two subgroups of receptors, namely muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs). Apart from its well-established physiological role in central nervous system (CNS) and peripheral nervous system (PNS), autonomic nervous system and neuromuscular junction, the widely distributed expression of AChRs in different human organs suggests roles in other biological processes in addition to synaptic transmission. Accumulating evidence revealed that cancer cell processes such as proliferation, apoptosis, angiogenesis and even epithelial-mesenchymal transition (EMT) are mediated by overexpression of AChRs in different kinds of tumors. In breast cancer, α7-nAChR and α9-nAChR were reported to be oncogenic. On the other hand, research on the role of mAChRs in breast cancer tumorgenesis is limited and confined to M3 receptor only. Since AChRs distributed in both CNS and PNS even non-neuronal tissues, there is an urgent need for the development of subtype-specific AChR antagonist which inhibits cancer cell progression with minimal intervention on the normal acetylcholine-regulated system within human body.


Assuntos
Acetilcolina/metabolismo , Neoplasias/patologia , Receptores Colinérgicos/metabolismo , Animais , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/metabolismo , Transdução de Sinais
11.
Cell Death Dis ; 10(4): 270, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894512

RESUMO

Triple-negative breast cancer (TNBC) is a malignant subtype of breast cancer with the absence of targeted therapy, resulting in poor prognosis in patients. Chemotherapy remains the mainstay of treatment for TNBC; however, development of drug resistance is the main obstacle for successful treatments. In recent years, long non-coding RNA (lncRNA) has been implicated in multiple biological functions in various diseases, particularly cancers. Accumulating evidence suggested that lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) expression is dysregulated in many human cancers and thus is a useful prognostic marker for cancer patients. Nevertheless, the mechanism of how NEAT1 confers drug resistance in TNBC is still largely unknown. We performed lncRNA profiling by the LncRNA Profiler qPCR Array Kit in normal control (NC) and breast cancers (BC) blood samples and further validated in a larger cohort of samples by qRT-PCR. Gene expression level and localization were investigated by qRT-PCR, western blotting, and immunofluorescence staining. Flow cytometric analysis was carried out to detect cancer stem cells. Functional studies were performed both in vitro and in vivo xenograft model. Among 90 lncRNAs, NEAT1 was highly expressed in the blood samples of breast cancer patients than in NC. In particular, the expression of NEAT1 was higher in TNBC tissues than other subgroups. Functional studies revealed that NEAT1 conferred oncogenic role by regulating apoptosis and cell cycle progression in TNBC cells. We identified that knockdown of NEAT1 sensitized cells to chemotherapy, indicating the involvement in chemoresistance. Importantly, shNEAT1 reduced stem cell populations such as CD44+/CD24-, ALDH+, and SOX2+, implicating that NEAT1 was closely related to cancer stemness in TNBC. Our data highlighted the roles of NEAT1 chemoresistance and cancer stemness, suggesting that it could be used as a new clinical therapeutic target for treating TNBC patients especially those with drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Idoso , Animais , Apoptose/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Transplante Heterólogo
12.
J Breast Cancer ; 20(1): 12-19, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28382090

RESUMO

Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer.

13.
Arch Gerontol Geriatr ; 64: 123-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26852301

RESUMO

AIM: To investigate the possible association between CFH gene polymorphisms -543G>A (rs1410996), A473A (rs2274700), -257C>T (rs3753394), IVS15 (rs1329428) and AMD risk. METHODS: We searched the published literature in the Medline and Scopus from inception to May 2015. A meta-analysis was performed by the programs RevMan 5.1 and Stata 12.0, and the Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated in fixed or random effect model based on heterogeneity test among studies. RESULTS: Nineteen studies with a total of 10,676 subjects were included in the present meta-analysis. A statistical significant association was observed between AMD risk and CFH -543G>A polymorphism with OR of 1.77 (95% CI, 1.47-2.12), 2.24 (95% CI, 1.71-2.94), 0.49 (95% CI, 0.38-0.62) and 0.25 (95% CI, 0.18-0.37) in additive, dominant, recessive and codominant models, respectively. Similar results were obtained in polymorphisms A473A, -257C>T, IVS15. Furthermore, stratified analysis for ethnicity showed a significantly strong association between -543G>A, A473A polymorphisms and AMD risk. CONCLUSION: The present meta-analysis suggested that CFH -543G>A, A473A, -257C>T, and IVS15 polymorphisms might be moderately associated with AMD risk. This conclusion warrants confirmation by further studies.


Assuntos
Povo Asiático/genética , Fator H do Complemento/genética , Degeneração Macular/genética , Idoso , Humanos , Polimorfismo de Nucleotídeo Único
14.
Am J Cancer Res ; 5(11): 3389-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26807319

RESUMO

Breast cancer is the most common cancer in women worldwide. Triple-negative breast cancer patients have higher metastatic rate than patients with other breast cancer subtypes. Distant metastasis is one of the causes leading to the high mortality rates. Cyclooxygenase-2 (COX2) is associated with breast cancer metastasis and the downstream prostaglandin E2 (PGE2) exerted its effect through EP receptors (EP1-EP4). However, the exact molecular events of EP receptors in breast cancer metastasis remain undefined. Expressions of EP receptors were determined during cancer development in NOD-SCID mice inoculated with MB-231 and MB-231-EP2 clone. EP2 overexpressing stable clone was constructed to investigate the proliferation and invasion potentials in vivo and in vitro. Drug transporter array was used to identify EP2 receptor-associated drug transported genes in breast cancer metastasis. Localization of EP2 receptor in primary tissues and xenografts were examined by immunostaining. Stable EP2-expression cells formed larger tumors than parental cells in mice model and was highly expressed in both primary and metastatic tissues. Silencing of EP2 receptor by siRNA and antagonist (AH 6809) significantly decreased cell proliferation and invasion, concomitant with reduced MMP-2 and MMP-9 expressions. Results from array data showed that expression of SLC19A3 was markedly increased in EP2 siRNA transfected cells. Ectopic expression of SLC19A3 retarded cell proliferation, invasion and MMPs expressions. Notably, SLC19A3 had a lower expression in primary tissues and was negatively correlated with EP2 receptor expression. Our novel finding revealed that EP2 receptor regulated metastasis through downregulation of SLC19A3. Thus, targeting EP2-SLC19A3 signaling is a potential therapeutic therapy for treating metastatic breast cancer.

15.
Radiat Oncol ; 10: 39, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25880731

RESUMO

BACKGROUND: Radiotherapy (RT) of the neck is commonly given to nasopharyngeal carcinoma (NPC) patients for preventing cervical lymph node metastasis. However, neck RT may induce the development of carotid atherosclerosis. The mechanisms of radiation-induced carotid atherosclerosis are still unclear and no previous study has investigated the genetic involvement of radiation-induced carotid atherosclerosis. The present study aims to determine the association between genetic polymorphisms and carotid atherosclerosis in patients treated with RT for nasopharyngeal carcinoma. METHODS: The present study recruited 128 post-RT NPC patients. Carotid plaque score was assessed using ultrasonography. Thirteen single nucleotide polymorphisms (SNPs) that affect the function of anti-atherosclerotic genes, including SOD2, SOD3, CAT, PON1, PPARG, ADIPOQ, IL10, TGFB1 and NOS3, were genotyped. Association between the 13 SNPs and carotid atherosclerosis was evaluated using multiple regression after adjustment for covariates (PLINK). Multiple testing was corrected using Benjamini-Hochberg step-up false discovery rate controlling procedure. RESULTS: rs662 and rs705379 of PON1 were close to be significantly associated with carotid plaque score (Corrected P value, P cor =0.0528 and P cor =0.0842). When the two SNPs were combined together, TC haplotype in rs662-rs705379 of PON1 was significantly associated with higher carotid plaque score (P cor < 0.05). None of the other SNPs showed significant association with carotid plaque score. CONCLUSIONS: TC haplotype in rs662-rs705379 of PON1 is likely to be a genetic risk factor of carotid plaque score. Post-RT NPC patients with the TC haplotype may need earlier and more frequent carotid ultrasound examinations for early detection of carotid atherosclerosis.


Assuntos
Biomarcadores/metabolismo , Doenças das Artérias Carótidas/etiologia , Neoplasias Nasofaríngeas/radioterapia , Polimorfismo de Nucleotídeo Único/genética , Radioterapia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/patologia , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Fatores de Risco
16.
Mol Clin Oncol ; 2(4): 553-558, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24940494

RESUMO

Radiation-induced fibrosis is one of the late complications of radiotherapy (RT) for nasopharyngeal carcinoma (NPC). The aim of this study was to investigate the association between X-ray repair cross-complementing protein 1 and 3 (XRCC1 and XRCC3, respectively) gene haplotypes and radiation-induced fibrosis in NPC patients. Genomic DNA was extracted from blood samples of 120 NPC patients previously treated with RT. In total, 12 tag single-nucleotide polymorphisms (SNPs) were selected from the XRCC1 and XRCC3 genes and were genotyped using restriction fragment length polymorphism analysis or unlabeled probe melting analysis. Single-marker and haplotype analyses were performed using multivariate logistic regression analysis. The functional variant rs861539 of XRCC3 may be associated with radiation-induced fibrosis [asymptotic P-value (Pasym)<0.05]. No significant association was observed between radiation-induced fibrosis and any of the tag SNPs of XRCC1 and XRCC3 in either single-marker or haplotype analysis after 10,000 permutations [empirical P-value (Pemp)>0.05]. Our preliminary results indicated that the rs861539 variant of XRCC3 may be associated with an increased risk of radiation-induced fibrosis; however, a large-scale study is required to confirm this result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA