Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(10): 3793-8, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567377

RESUMO

Toll-like receptors (TLRs) play key roles in innate immune recognition of pathogen-associated molecular patterns of invading microbes. Among the 10 TLR family members identified in humans, TLR10 remains an orphan receptor without known agonist or function. TLR10 is a pseudogene in mice and mouse models are noninformative in this regard. Using influenza virus infection in primary human peripheral blood monocyte-derived macrophages and a human monocytic cell line, we now provide previously unidentified evidence that TLR10 plays a role in innate immune responses following viral infection. Influenza virus infection increased TLR10 expression and TLR10 contributed to innate immune sensing of viral infection leading to cytokine induction, including proinflammatory cytokines and interferons. TLR10 induction is more pronounced following infection with highly pathogenic avian influenza H5N1 virus compared with a low pathogenic H1N1 virus. Induction of TLR10 by virus infection requires active virus replication and de novo protein synthesis. Culture supernatants of virus-infected cells modestly up-regulate TLR10 expression in nonvirus-infected cells. Signaling via TLR10 was activated by the functional RNA-protein complex of influenza virus leading to robust induction of cytokine expression. Taken together, our findings identify TLR10 as an important innate immune sensor of viral infection and its role in innate immune defense and immunopathology following viral and bacterial pathogens deserves attention.


Assuntos
Imunidade Inata/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/imunologia , Receptor 10 Toll-Like/imunologia , Animais , Benzotiazóis , Western Blotting , Primers do DNA/genética , Diaminas , Cães , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Macrófagos , Células Madin Darby de Rim Canino , Camundongos , Compostos Orgânicos , Quinolinas , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 10 Toll-Like/metabolismo
2.
Respir Res ; 11: 147, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21029402

RESUMO

BACKGROUND: Pandemic influenza H1N1 (pdmH1N1) virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. METHODS: We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. RESULTS: Overall, we found that most of the genes that induced by the pdmH1N1 were similarly regulated in response to seasonal H1N1 infection with respect to both trend and extent of gene expression. These commonly responsive genes were largely related to the interferon (IFN) response. Expression of the type III IFN IL29 was more prominent than the type I IFN IFNß and a similar pattern of expression of both IFN genes was seen in pdmH1N1 and seasonal H1N1 infection. Genes that were significantly down-regulated in response to seasonal H1N1 but not in response to pdmH1N1 included the zinc finger proteins and small nucleolar RNAs. Gene Ontology (GO) and pathway over-representation analysis suggested that these genes were associated with DNA binding and transcription/translation related functions. CONCLUSIONS: Both seasonal H1N1 and pdmH1N1 trigger similar host responses including IFN-based antiviral responses and cytokine responses. Unlike the avian H5N1 virus, pdmH1N1 virus does not have an intrinsic capacity for cytokine dysregulation. The differences between pdmH1N1 and seasonal H1N1 viruses lay in the ability of seasonal H1N1 virus to down regulate zinc finger proteins and small nucleolar RNAs, which are possible viral transcriptional suppressors and eukaryotic translation initiation factors respectively. These differences may be biologically relevant and may represent better adaptation of seasonal H1N1 influenza virus to the host.


Assuntos
Citocinas/imunologia , Hospedeiro Imunocomprometido/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/virologia , Estações do Ano , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Pandemias
3.
Virol J ; 5: 2, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18186945

RESUMO

The initiation of transcription and replication of influenza A virus requires the 5' and 3' ends of vRNA. Here, the role of segment-specific non-coding sequences of influenza A virus on viral RNA synthesis was studied. Recombinant viruses, with the nonstructural protein (NS) segment-specific non-coding sequences replaced by the corresponding sequences of the neuraminidase (NA) segment, were characterized. The NS and NA vRNA levels in cells infected with these mutants were much higher than those of the wild type, whereas the NS and NA mRNA levels of the mutants were comparable to the wild-type levels. By contrast, the PB2 vRNA and mRNA levels of all the tested viruses were similar, indicating that vRNA with heterologous segment-specific non-coding sequences was not affected by the mutations. The observations suggested that, with the cooperation between the homologous 5' and 3'segment-specific sequences, the introduced mutations could specifically enhance the replication of NA and NS vRNA.


Assuntos
Vírus da Influenza A/fisiologia , RNA Viral/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Linhagem Celular , Genoma Viral , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Neuraminidase/genética , Neuraminidase/metabolismo , RNA Mensageiro/análise , RNA Viral/química , Transcrição Gênica
4.
Ann N Y Acad Sci ; 1102: 1-25, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17470908

RESUMO

The outbreaks of avian influenza A virus in poultry and humans over the last decade posed a pandemic threat to human. Here, we discuss the basic classification and the structure of influenza A virus. The viral genome contains eight RNA viral segments and the functions of viral proteins encoded by this genome are described. In addition, the RNA transcription and replication of this virus are reviewed.


Assuntos
Vírus da Influenza A/fisiologia , Genoma Viral , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/ultraestrutura , RNA Viral/genética , Transcrição Gênica , Proteínas Virais/fisiologia , Replicação Viral
5.
Antiviral Res ; 91(3): 330-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21798291

RESUMO

A selective cyclooxygenase-2 (COX-2) inhibitor has been previously shown to suppress the hyper-induced pro-inflammatory responses in H5N1 infected primary human cells. Here, we demonstrate that COX-2 inhibitors suppress H5N1 virus replication in human macrophages suggesting that H5N1 virus replication (more so than seasonal H1N1 virus) is dependent on activation of COX-2 dependent signaling pathways in host cells. COX-2 and its downstream signaling pathways deserve detailed investigation as a novel therapeutic target for treatment of H5N1 disease.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Virais/metabolismo , Animais , Antivirais/farmacologia , Aves , Células Cultivadas , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/farmacologia , Relação Dose-Resposta a Droga , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Influenza Humana/virologia , Macrófagos/citologia , Macrófagos/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
6.
J Virol Methods ; 165(2): 302-4, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20138917

RESUMO

The recent emergence of a novel H1N1 influenza A virus in humans caused the first influenza pandemic of this century. Many clinical diagnostic laboratories are overwhelmed by the testing demands related to the infection. Three novel H1N1-specific primer-probe sets reported during the early phase of the pandemic were tested in three commercial real-time RT-PCR mixtures. The amplification efficiencies and detection limits of these assays were determined. A ready-to-use premixed RT-PCR stored in a lyophilized format was developed. The detection limits of the studied assays were highly variable, ranging from 1.68E-01 to 1.68E-05 TCID(50) per reaction. The detection limit of the lyophilized reaction mixture was found to be 1.68E-05 TCID(50) per reaction, but the amplification efficiency of the assay was lower than those deduced from the other assays. All respiratory samples from infected patients and all control nasopharyngeal aspirates were positive and negative, respectively, in the newly developed assay. The results highlighted that, to enhance the sensitivity of an assay, it is essential to evaluate a primer-probe set with different commercial RT-PCR assays. This study also demonstrated the feasibility of using lyophilized reaction mixtures for the molecular diagnosis of novel H1N1.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Primers do DNA , Liofilização , Humanos , Kit de Reagentes para Diagnóstico
7.
PLoS One ; 4(12): e8072, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20011590

RESUMO

Human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome. There is increasing evidence from clinical, animal models and in vitro data, which suggests a role for virus-induced cytokine dysregulation in contributing to the pathogenesis of human H5N1 disease. The key target cells for the virus in the lung are the alveolar epithelium and alveolar macrophages, and we have shown that, compared to seasonal human influenza viruses, equivalent infecting doses of H5N1 viruses markedly up-regulate pro-inflammatory cytokines in both primary cell types in vitro. Whether this H5N1-induced dysregulation of host responses is driven by qualitative (i.e activation of unique host pathways in response to H5N1) or quantitative differences between seasonal influenza viruses is unclear. Here we used microarrays to analyze and compare the gene expression profiles in primary human macrophages at 1, 3, and 6 h after infection with H5N1 virus or low-pathogenic seasonal influenza A (H1N1) virus. We found that host responses to both viruses are qualitatively similar with the activation of nearly identical biological processes and pathways. However, in comparison to seasonal H1N1 virus, H5N1 infection elicits a quantitatively stronger host inflammatory response including type I interferon (IFN) and tumor necrosis factor (TNF)-alpha genes. A network-based analysis suggests that the synergy between IFN-beta and TNF-alpha results in an enhanced and sustained IFN and pro-inflammatory cytokine response at the early stage of viral infection that may contribute to the viral pathogenesis and this is of relevance to the design of novel therapeutic strategies for H5N1 induced respiratory disease.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Macrófagos/imunologia , Macrófagos/virologia , Animais , Aves/virologia , Células Cultivadas , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Influenza Aviária/imunologia , Influenza Humana/imunologia , Interferon Tipo I/imunologia , Monócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Fatores de Tempo , Regulação para Cima/genética
9.
Clin Chem ; 50(1): 67-72, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14709637

RESUMO

BACKGROUND: A novel coronavirus (CoV) was recently identified as the agent for severe acute respiratory syndrome (SARS). We compared the abilities of conventional and real-time reverse transcription-PCR (RT-PCR) assays to detect SARS CoV in clinical specimens. METHODS: RNA samples isolated from nasopharyngeal aspirate (NPA; n = 170) and stool (n = 44) were reverse-transcribed and tested by our in-house conventional RT-PCR assay. We selected 98 NPA and 37 stool samples collected at different times after the onset of disease and tested them in a real-time quantitative RT-PCR specific for the open reading frame (ORF) 1b region of SARS CoV. Detection rates for the conventional and real-time quantitative RT-PCR assays were compared. To investigate the nature of viral RNA molecules in these clinical samples, we determined copy numbers of ORF 1b and nucleocapsid (N) gene sequences of SARS CoV. RESULTS: The quantitative real-time RT-PCR assay was more sensitive than the conventional RT-PCR assay for detecting SARS CoV in samples collected early in the course of the disease. Real-time assays targeted at the ORF 1b region and the N gene revealed that copy numbers of ORF 1b and N gene sequences in clinical samples were similar. CONCLUSIONS: NPA and stool samples can be used for early diagnosis of SARS. The real-time quantitative RT-PCR assay for SARS CoV is potentially useful for early detection of SARS CoV. Our results suggest that genomic RNA is the predominant viral RNA species in clinical samples.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Fezes/virologia , Humanos , Cavidade Nasal/virologia , Faringe/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Síndrome Respiratória Aguda Grave/virologia , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA