Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873045

RESUMO

In the field of circulating cell-free DNA, most of the studies have focused on short DNA molecules (e.g., <500 bp). The existence of long cell-free DNA molecules has been poorly explored. In this study, we demonstrated that single-molecule real-time sequencing allowed us to detect and analyze a substantial proportion of long DNA molecules from both fetal and maternal sources in maternal plasma. Such molecules were beyond the size detection limits of short-read sequencing technologies. The proportions of long cell-free DNA molecules in maternal plasma over 500 bp were 15.5%, 19.8%, and 32.3% for the first, second, and third trimesters, respectively. The longest fetal-derived plasma DNA molecule observed was 23,635 bp. Long plasma DNA molecules demonstrated predominance of A or G 5' fragment ends. Pregnancies with preeclampsia demonstrated a reduction in long maternal plasma DNA molecules, reduced frequencies for selected 5' 4-mer end motifs ending with G or A, and increased frequencies for selected motifs ending with T or C. Finally, we have developed an approach that employs the analysis of methylation patterns of the series of CpG sites on a long DNA molecule for determining its tissue origin. This approach achieved an area under the curve of 0.88 in differentiating between fetal and maternal plasma DNA molecules, enabling the determination of maternal inheritance and recombination events in the fetal genome. This work opens up potential clinical utilities of long cell-free DNA analysis in maternal plasma including noninvasive prenatal testing of monogenic diseases and detection/monitoring of pregnancy-associated disorders such as preeclampsia.


Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Adulto , Cromossomos/genética , Simulação por Computador , Feminino , Feto , Humanos , Gravidez , Imagem Individual de Molécula
2.
Ann Transl Med ; 12(4): 64, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118954

RESUMO

Background: Circulating tumor DNA (ctDNA) analysis has been applied in cancer diagnostics including lung cancer. Specifically for the early detection purpose, various modalities of ctDNA analysis have demonstrated their potentials. Such analyses have showed diverse performance across different studies. Methods: We performed a systematic review of original studies published before 1 January 2023. Studies that evaluated ctDNA alone and in combination with other biomarkers for early detection of lung cancer were included. Results: The systematic review analysis included 56 original studies that were aimed for early detection of lung cancer. There were 39 studies for lung cancer only and 17 for pan-cancer early detection. Cancer and control cases included were heterogenous across studies. Different molecular features of ctDNA have been evaluated, including 7 studies on cell-free DNA concentration, 17 on mutation, 29 on methylation, 5 on hydroxymethylation and 8 on fragmentation patterns. Among these 56 studies, 17 have utilised different combinations of the above-mentioned ctDNA features and/or circulation protein markers. For all the modalities, lower sensitivities were reported for the detection of early-stage cancer. Conclusions: The systematic review suggested the clinical utility of ctDNA analysis for early detection of lung cancer, alone or in combination with other biomarkers. Future validation with standardised testing protocols would help integration into clinical care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA