Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571566

RESUMO

Autonomous driving vehicles rely on sensors for the robust perception of their surroundings. Such vehicles are equipped with multiple perceptive sensors with a high level of redundancy to ensure safety and reliability in any driving condition. However, multi-sensor, such as camera, LiDAR, and radar systems raise requirements related to sensor calibration and synchronization, which are the fundamental blocks of any autonomous system. On the other hand, sensor fusion and integration have become important aspects of autonomous driving research and directly determine the efficiency and accuracy of advanced functions such as object detection and path planning. Classical model-based estimation and data-driven models are two mainstream approaches to achieving such integration. Most recent research is shifting to the latter, showing high robustness in real-world applications but requiring large quantities of data to be collected, synchronized, and properly categorized. However, there are two major research gaps in existing works: (i) they lack fusion (and synchronization) of multi-sensors, camera, LiDAR and radar; and (ii) generic scalable, and user-friendly end-to-end implementation. To generalize the implementation of the multi-sensor perceptive system, we introduce an end-to-end generic sensor dataset collection framework that includes both hardware deploying solutions and sensor fusion algorithms. The framework prototype integrates a diverse set of sensors, such as camera, LiDAR, and radar. Furthermore, we present a universal toolbox to calibrate and synchronize three types of sensors based on their characteristics. The framework also includes the fusion algorithms, which utilize the merits of three sensors, namely, camera, LiDAR, and radar, and fuse their sensory information in a manner that is helpful for object detection and tracking research. The generality of this framework makes it applicable in any robotic or autonomous applications and suitable for quick and large-scale practical deployment.

2.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37448036

RESUMO

The adoption of the General Data Protection Regulation (GDPR) has resulted in a significant shift in how the data of European Union citizens is handled. A variety of data sharing challenges in scenarios such as smart cities have arisen, especially when attempting to semantically represent GDPR legal bases, such as consent, contracts and the data types and specific sources related to them. Most of the existing ontologies that model GDPR focus mainly on consent. In order to represent other GDPR bases, such as contracts, multiple ontologies need to be simultaneously reused and combined, which can result in inconsistent and conflicting knowledge representation. To address this challenge, we present the smashHitCore ontology. smashHitCore provides a unified and coherent model for both consent and contracts, as well as the sensor data and data processing associated with them. The ontology was developed in response to real-world sensor data sharing use cases in the insurance and smart city domains. The ontology has been successfully utilised to enable GDPR-complaint data sharing in a connected car for insurance use cases and in a city feedback system as part of a smart city use case.


Assuntos
Segurança Computacional , Registros , Cidades , União Europeia , Disseminação de Informação
3.
Sensors (Basel) ; 22(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35161730

RESUMO

The hard drive is one of the important components of a computing system, and its failure can lead to both system failure and data loss. Therefore, the reliability of a hard drive is very important. Realising this importance, a number of studies have been conducted and many are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on machine learning, and a few others on semantic technology. The studies based on machine learning, despite promising results, lack context-awareness such as how failures are related or what other factors, such as humidity, influence the failure of hard drives. Semantic technology, on the other hand, by means of ontologies and knowledge graphs (KGs), is able to provide the context-awareness that machine learning-based studies lack. However, the studies based on semantic technology lack the advantages of machine learning, such as the ability to learn a pattern and make predictions based on learned patterns. Therefore, in this paper, leveraging the benefits of both machine learning (ML) and semantic technology, we present our study, knowledge graph-based hard drive failure prediction. The experimental results demonstrate that our proposed method achieves higher accuracy in comparison to the current state of the art.


Assuntos
Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Conhecimento , Reprodutibilidade dos Testes , Semântica
4.
Sensors (Basel) ; 22(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35408377

RESUMO

The enforcement of the GDPR in May 2018 has led to a paradigm shift in data protection. Organizations face significant challenges, such as demonstrating compliance (or auditability) and automated compliance verification due to the complex and dynamic nature of consent, as well as the scale at which compliance verification must be performed. Furthermore, the GDPR's promotion of data protection by design and industrial interoperability requirements has created new technical challenges, as they require significant changes in the design and implementation of systems that handle personal data. We present a scalable data protection by design tool for automated compliance verification and auditability based on informed consent that is modeled with a knowledge graph. Automated compliance verification is made possible by implementing a regulation-to-code process that translates GDPR regulations into well-defined technical and organizational measures and, ultimately, software code. We demonstrate the effectiveness of the tool in the insurance and smart cities domains. We highlight ways in which our tool can be adapted to other domains.


Assuntos
Segurança Computacional , Consentimento Livre e Esclarecido , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA