Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635197

RESUMO

Carvedilol (Cav), a nonselective ß-blocker with α1 adrenoceptor blocking effect, has been used as a standard therapy for coronary artery disease. This study investigated the effects of Cav on exosome expression and function, ATP-binding cassette transporter A1 (ABCA1) expression, and cholesterol efflux that are relevant to the process of atherosclerosis. Human monocytic (THP-1) cell line and human hepatic (Huh-7) cells were treated with Cav, and cholesterol efflux was measured. Exosomes from cell culture medium or mice serum were isolated using glycan-coated recognition beads. Low-density lipoprotein receptor knockout (ldlr-/-) mice were fed with high-fat diet and treated with Cav. Cav accentuated cholesterol efflux and enhanced the expressions of ABCA1 protein and mRNA in both THP-1 and Huh-7 cells. In addition, Cav increased expression and function of exosomal ABCA1 in THP-1 macrophage exosomes. The mechanisms were associated with inhibition of nuclear factor-κB (NF-κB) and protein kinase B (Akt). In hypercholesterolemic ldlr-/- mice, Cav enhanced serum exosomal ABCA1 expression and suppressed atherosclerosis by inhibiting lipid deposition and macrophage accumulation. Cav halts atherosclerosis by enhancing cholesterol efflux and increasing ABCA1 expression in macrophages and in exosomes, possibly through NF-κB and Akt signaling, which provides mechanistic insights regarding the beneficial effects of Cav on atherosclerotic cardiovascular disease.


Assuntos
Anti-Hipertensivos/farmacologia , Aterosclerose/tratamento farmacológico , Carvedilol/farmacologia , Colesterol/metabolismo , Exossomos/metabolismo , Receptores de LDL/fisiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Dieta Hiperlipídica/efeitos adversos , Exossomos/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células THP-1
2.
Front Microbiol ; 15: 1361270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510998

RESUMO

Introduction: Bacteria inhabit the in- and outside of the human body, such as skin, gut or the oral cavity where they play an innoxious, beneficial or even pathogenic role. It is well known that bacteria can secrete membrane vesicles (MVs) like eukaryotic cells with extracellular vesicles (EVs). Several studies indicate that bacterial membrane vesicles (bMVs) play a crucial role in microbiome-host interactions. However, the composition of such bMVs and their functionality under different culture conditions are still largely unknown. Methods: To gain a better insight into bMVs, we investigated the composition and functionality of E. coli (DSM 105380) bMVs from the culture media Lysogeny broth (LB) and RPMI 1640 throughout the different phases of growth (lag-, log- and stationary-phase). bMVs from three time points (8 h, 54 h, and 168 h) and two media (LB and RPMI 1640) were isolated by ultracentrifugation and analyzed using nanoparticle tracking analysis (NTA), cryogenic electron microscopy (Cryo-EM), conventional transmission electron microscopy (TEM) and mass spectrometry-based proteomics (LC-MS/MS). Furthermore, we examined pro-inflammatory cytokines IL-1ß and IL-8 in the human monocyte cell line THP-1 upon bMV treatment. Results: Particle numbers increased with inoculation periods. The bMV morphologies in Cryo-EM/TEM were similar at each time point and condition. Using proteomics, we identified 140 proteins, such as the common bMV markers OmpA and GroEL, present in bMVs isolated from both media and at all time points. Additionally, we were able to detect growth-condition-specific proteins. Treatment of THP-1 cells with bMVs of all six groups lead to significantly high IL-1ß and IL-8 expressions. Conclusion: Our study showed that the choice of medium and the duration of culturing significantly influence both E. coli bMV numbers and protein composition. Our TEM/Cryo-EM results demonstrated the presence of intact E. coli bMVs. Common E. coli proteins, including OmpA, GroEL, and ribosome proteins, can consistently be identified across all six tested growth conditions. Furthermore, our functional assays imply that bMVs isolated from the six groups retain their function and result in comparable cytokine induction.

3.
Front Immunol ; 15: 1388769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726003

RESUMO

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Organoides/imunologia , MicroRNAs/genética , Microambiente Tumoral/imunologia , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
4.
Nat Commun ; 14(1): 709, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759608

RESUMO

Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic ß-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic ß-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand.


Assuntos
Vesículas Extracelulares , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Secreção de Insulina , Insulina/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Vesículas Extracelulares/metabolismo , Ilhotas Pancreáticas/metabolismo
5.
Int J Oncol ; 61(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129151

RESUMO

Extracellular vesicles (EVs) have recently come into the spotlight as potential cancer biomarkers. Isolation of pure EVs is complex, so wider use requires reliable and time­efficient isolation methods. In the present study, galectin­based magnetic glycan recognition particles, EXÖBead® were investigated for their practicality as a novel EV isolation technique, exemplified here for squamous cell carcinoma of the head and neck. Analysis of the isolation method showed a high concentration of pure EVs with detection of specific EV markers such as CD9, CD63, CD81 and TSG101. No apolipoprotein A1 was shown in the isolates, indicating low contamination of this isolation technique compared with size exclusion chromatography. In addition, common leukocyte antigen (CD45), three HNSCC [epithelial cell adhesion molecule (EpCAM), pan­cytokeratin and programmed death­ligand 1 (PD­L1)] and PanEV markers (premixed CD9, CD63 and CD81 antibodies) were measured by bead­based flow cytometry (BFC). BFC revealed that CD45Neg PanEV+, EpCAM+ PanEV+ and PD­L1+ PanEV+ were significantly higher in tumor patients compared with healthy control plasma. CD45Neg PanEV+ and CD45+ PanEV+ carrying two or three HNSCC biomarkers were also significantly higher in tumor patients compared with healthy controls (BFC). Comparison of the functional immunosuppression effect of eluted tumor patient plasma EVs from EXÖBead® and commercial polyethylene glycol isolation showed a significant tumor­dependent increase in concentration of EVs. A peripheral blood mononuclear cell activation assay also showed that the T­cell functionality of tumor patient plasma EVs isolated with EXÖBead® was preserved in vitro. In conclusion, isolation using galectin­based magnetic glycan recognition particles is a novel method for isolating plasma EVs with low lipoprotein contamination. Bead­based flow cytometry provided an easy way to understand EV subpopulations. EXÖBead® therefore showed great potential as a new isolation tool with high throughput capacity that could potentially be used in a clinical setting.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Molécula de Adesão da Célula Epitelial , Vesículas Extracelulares/metabolismo , Galectinas , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Queratinas , Leucócitos Mononucleares/metabolismo , Lipoproteínas/metabolismo , Polietilenoglicóis , Polissacarídeos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
6.
Toxins (Basel) ; 13(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34564623

RESUMO

Patients bitten by Naja atra who are treated with bivalent freeze-dried neurotoxic antivenom in Taiwan have an improved survival rate but develop necrotic wound changes. The World Health Organization (WHO) has suggested using the minimum necrotizing dose (MND) of venom as a method of evaluating the neutralization effect of antivenom. The aim of this study was to evaluate the effectiveness of antivenom for the prevention of necrosis based on the MND and clarify which component of the venom of N. atra induces necrosis. The neurotoxins (NTXs) were removed from the crude venom (deNTXs), and different concentrations of deNTXs were injected intradermally into the dorsal skin of mice. After three days, the necrotic lesion diameter was found to be approximately 5 mm, and the MND was calculated. A reduction in the necrotic diameter of 50% was used to identify the MND50. Furthermore, both phospholipase A2 (PLA2) and cytotoxins (CTXs) were separately removed from the deNTXs to identify the major necrosis-inducing factor, and the necrotic lesions were scored. All mice injected with deNTXs survived for three days and developed necrotic wounds. The MND of the deNTXs for mice was 0.494 ± 0.029 µg/g, that of the deNTXs-dePLA2 (major component retained: CTXs) was 0.294 ± 0.05 µg/g, and that of the deNTX-deCTX (major component retained: PLA2) venom was greater than 1.25 µg/g. These values show that CTX is the major factor inducing necrosis. These results suggest that the use of the deNTXs is necessary to enable the mice to survive long enough to develop venom-induced cytolytic effects. CTXs play a major role in N. atra-related necrosis. However, the MND50 could not be identified in this study, which meant that the antivenom did not neutralize venom-induced necrosis.


Assuntos
Antivenenos/farmacologia , Venenos Elapídicos/toxicidade , Naja naja , Necrose/tratamento farmacológico , Animais , Liofilização , Masculino , Camundongos , Necrose/induzido quimicamente
7.
Sci Rep ; 6: 34879, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748356

RESUMO

Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level.


Assuntos
Anafilaxia/imunologia , Grânulos Citoplasmáticos/ultraestrutura , Mastócitos/ultraestrutura , Mitocôndrias/ultraestrutura , Tomografia por Raios X/métodos , Animais , Degranulação Celular , Linhagem Celular , Espaço Intracelular , Microscopia Eletrônica , Nanotecnologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA