Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257633

RESUMO

Electrooculography (EOG) serves as a widely employed technique for tracking saccadic eye movements in a diverse array of applications. These encompass the identification of various medical conditions and the development of interfaces facilitating human-computer interaction. Nonetheless, EOG signals are often met with skepticism due to the presence of multiple sources of noise interference. These sources include electroencephalography, electromyography linked to facial and extraocular muscle activity, electrical noise, signal artifacts, skin-electrode drifts, impedance fluctuations over time, and a host of associated challenges. Traditional methods of addressing these issues, such as bandpass filtering, have been frequently utilized to overcome these challenges but have the associated drawback of altering the inherent characteristics of EOG signals, encompassing their shape, magnitude, peak velocity, and duration, all of which are pivotal parameters in research studies. In prior work, several model-based adaptive denoising strategies have been introduced, incorporating mechanical and electrical model-based state estimators. However, these approaches are really complex and rely on brain and neural control models that have difficulty processing EOG signals in real time. In this present investigation, we introduce a real-time denoising method grounded in a constant velocity model, adopting a physics-based model-oriented approach. This approach is underpinned by the assumption that there exists a consistent rate of change in the cornea-retinal potential during saccadic movements. Empirical findings reveal that this approach remarkably preserves EOG saccade signals, resulting in a substantial enhancement of up to 29% in signal preservation during the denoising process when compared to alternative techniques, such as bandpass filters, constant acceleration models, and model-based fusion methods.


Assuntos
Aceleração , Movimentos Sacádicos , Humanos , Eletroculografia , Algoritmos , Encéfalo
2.
J Biomech Eng ; 143(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33537722

RESUMO

We present a novel method based on the quasi-linear viscoelastic (QLV) theory to describe the time-dependent behavior of soft materials. Unlike previous methods for deriving QLV parameters, we characterize the elastic and viscous behavior of materials separately by using two different sets of experiments. To model the nonlinear elastic behavior, we fit the elastic stress response with a one-term Ogden model. Then, we model the relaxation behavior with a Prony series to compare the stress relaxation of the material at different timescales. This new method allows us to characterize materials with narrow confidence intervals (high accuracy), independently from the loading conditions. We validate our model using samples made of phantom materials that mimic normal and cancerous prostate tissues in terms of Young's modulus. Our model is shown to distinguish materials with similar elastic (viscous) properties but different viscous (elastic) properties. Drawing a precise distinction between the phantoms, this method could be useful for prostate cancer (PCa) diagnosis; but significant clinical studies will be needed in the future.


Assuntos
Módulo de Elasticidade
3.
Prostate ; 77(13): 1356-1365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28786159

RESUMO

BACKGROUND: The vast majority of prostate cancer presents clinically localized to the prostate without evidence of metastasis. Currently, there are several modalities available to treat this particular disease. Despite radical prostatectomy demonstrating a modest prostate cancer specific mortality benefit in the PIVOT trial, several novel modalities have emerged to treat localized prostate cancer in patients that are either not eligible for surgery or that prefer an alternative approach. METHODS: Athymic nude mice were subcutaneously inoculated with prostate cancer cells. The mice were divided into four cohorts, one cohort untreated, two cohorts received docetaxel (10 mg/kg) either subcutaneously (SC) or intravenously (IV) and the fourth cohort was treated using the magnetically-actuated docetaxel delivery device (MADDD), dispensing 1.5 µg of docetaxel per 30 min treatment session. Treatment in all three therapeutic arms (SC, IV, and MADDD) was administered once weekly for 6 weeks. Treatment efficacy was measured once a week according to tumor volume using ultrasound. In addition, calipers were used to assess tumor volume. RESULTS: Animals implanted with the device demonstrated no signs of distress or discomfort, neither local nor systemic symptoms of inflammation and infection. Using an independent sample t-test, the tumor growth rate of the treated tumors was significant when compared to the control. Post hoc Tukey HSD test results showed that the mean tumor growth rate of our device cohort was significantly lower than SC and control cohorts. Moreover, IV cohort showed slight reduction in mean tumor growth rates than the ones from the device cohort, however, there was no statistical significance in tumor growth rate between these two cohorts. Furthermore, immunohistochemistry demonstrated an increased cellular apoptosis in the MADDD treated tumors and a decreased proliferation when compared to the other cohorts. In addition, IV cohort showed increased treatment side effects (weight loss) when compared to the device cohort. Finally, MADDD showed minimal expression of CD45 comparable to the control cohort, suggesting no signs of chronic inflammation. CONCLUSIONS: In conclusion, this study showed for the first time that MADDD, clearly suppressed tumor growth in local prostate cancer tumors. This could potentially be a novel clinical treatment approach for localized prostate cancer.


Assuntos
Sistemas de Liberação de Medicamentos , Imãs , Prostatectomia , Neoplasias da Próstata , Taxoides/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Docetaxel , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Monitoramento de Medicamentos/métodos , Masculino , Camundongos , Camundongos Nus , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Antígeno Prostático Específico , Prostatectomia/instrumentação , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Resultado do Tratamento , Carga Tumoral
4.
J Med Biol Eng ; 35(2): 143-155, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25960703

RESUMO

Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-fouling coatings of PDMS. In this review, typical nonfouling materials for PDMS coatings are introduced and the associated basic anti-fouling mechanisms, including the steric repulsion mechanism and the hydration layer mechanism, are described. Understanding the relationships between the characteristics of coating materials and the accompanying anti-fouling mechanisms is critical for preparing PDMS coatings with desirable anti-fouling properties.

5.
Acta Biomater ; 173: 184-198, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939817

RESUMO

Pathological disorders can alter the mechanical properties of biological tissues, and studying such changes can help to better understand the disease progression. The prostate gland is no exception, as previous studies have shown that cancer can affect its mechanical properties. However, most of these studies have focused on the elastic properties of the tissue and have overlooked the impact of cancer on its viscous response. To address this gap, we used a quasi-linear viscoelastic model to investigate the impact of cancer on both the elastic and viscous characteristics of the prostate gland. By comparing the viscoelastic properties of segments influenced by cancer and those unaffected by cancer in 49 fresh prostates, removed within two hours after prostatectomy surgery, we were able to determine the influence of cancer grade and tumor volume on the tissue. Our findings suggest that tumor volume significantly affects both the elastic modulus and viscosity of the prostate (p-value less than 2%). Specifically, we showed that cancer increases Young's modulus and shear relaxation modulus by 20%. These results have implications for using mechanical properties of the prostate as a potential biomarker for cancer. However, developing an in vivo apparatus to measure these properties remains a challenge that needs to be addressed in future research. STATEMENT OF SIGNIFICANCE: This study is the first to explore how cancer impacts the mechanical properties of prostate tissues using a quasi-linear viscoelastic model. We examined 49 fresh prostate samples collected immediately after surgery and correlated their properties with cancer presence identified in pathology reports. Our results demonstrate a 20% change in the viscoelastic properties of the prostate due to cancer. We initially validated our approach using tissue-mimicking phantoms and then applied it to differentiate between cancerous and normal prostate tissues. These findings offer potential for early cancer detection by assessing these properties. However, conducting these tests in vivo remains a challenge for future research.


Assuntos
Neoplasias , Próstata , Masculino , Humanos , Estresse Mecânico , Módulo de Elasticidade/fisiologia , Viscosidade , Elasticidade
6.
Soft Robot ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598719

RESUMO

Soft pneumatic actuators (SPAs) play a crucial role in generating movements and forces in soft robotic systems. However, existing SPA designs require significant structural modifications to be used in applications other than their original design. The present article proposes an omni-purpose fully 3D-printable SPA design inspired by membrane type mold and cast SPAs. The design features a spring-like zig-zag structure 3D-printed using an affordable 3D printer with thermoplastic polyurethane and a minimum wall thickness between 0.4 and 0.6 mm. The new SPA can perform unidirectional extension (30% extension) and bidirectional (rotation around same axis) bending (100°), with the ability to exert 10 N blocking force for 350 kPa pressure input. In addition, the design exhibits the capability to be scaled down for the purpose of accommodating limited spaces, while simultaneously enabling the reconfigurable interconnection of multiple SPAs to adapt to larger areas and navigate intricate trajectories that were not originally intended. The SPA's ability to be used in multiple applications without structural modification was validated through testing as a robot end-effector (gripper), artificial muscles in a soft tendon-driven prosthetic hand, a tube/tunnel navigator, and a robot crawler.

7.
bioRxiv ; 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609317

RESUMO

Hypertrophic cardiomyopathy (HCM) is one of the most common heritable cardiovascular diseases and variants of TNNT2 (cardiac troponin T) are linked to increased risk of sudden cardiac arrest despite causing limited hypertrophy. In this study, a TNNT2 variant, R278C+/-, was generated in both human cardiac recombinant/reconstituted thin filaments (hcRTF) and human- induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which the R278C+/- variant affects cardiomyocytes at the proteomic and functional levels. The results of proteomics analysis showed a significant upregulation of markers of cardiac hypertrophy and remodeling in R278C+/- vs. the isogenic control. Functional measurements showed that R278C+/- variant enhances the myofilament sensitivity to Ca2+, increases the kinetics of contraction, and causes arrhythmia at frequencies >75 bpm. This study uniquely shows the profound impact of the TNNT2 R278C+/- variant on the cardiomyocyte proteomic profile, cardiac electrical and contractile function in the early stages of cardiac development.

8.
J Biomed Mater Res A ; 110(5): 1036-1051, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997805

RESUMO

Antibiotic-loaded bone cement beads have been a reliable passive delivery system for the localized treatment of osteomyelitis; however, low, and unregulated drug release rates limit the ability of this system to maintain therapeutic concentrations. This problem is further amplified by drug-resistant pathogens that might invade or evolve under these conditions. Furthermore, currently available bone cements are incompatible with some antibiotics. The proposed device resembles conventional bone cement beads but contains an on-demand drug delivery magnetic sponge that provides actively controlled release of antibiotics. The slightly porous structure facilitates some drug diffusion while further drug release may be controlled remotely via magnetic actuation. Additionally, a combination of silver nitrate and gentamicin are used in the device as these agents are shown to display a synergistic antibacterial activity in vitro using checkerboard and time-kill assays. The device releases gentamicin and silver in both actuation and diffusion modes over 7 days. The in vitro bacterial studies demonstrate the efficacy of the released agents alone, and synergistically in combination, against Methicillin-resistant Staphylococcus aureus and Escherichia coli. The proposed device offers a facile fabrication process which allows control of the release profile by engineering hole configurations or manipulating magnetic field strength to provide the most effective therapy.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Cimentos Ósseos/química , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Campos Magnéticos , Fenômenos Magnéticos
9.
Opt Express ; 19(25): 25161-72, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273907

RESUMO

This paper presents a confocal microscanner for direct vertical optical sectioning of biological samples. Confocal imaging is performed by transverse (X-axis) and axial (Z-axis) scanning of a focused laser beam using an optical fiber and a microlens respectively. The actuators are fabricated by laser micromachining techniques and are driven by electromagnetic forces. Optical and mechanical performance of the system is predicted by simulation software packages and characterized by experimental measurements. The scanner has lateral resolution of 3.87 µm and axial resolution of 10.68 µm with a field of view of 145 µm in X and 190 µm in Z directions. Confocal imaging of a polymer layer deposited on a silicon wafer and onion epidermal cells is demonstrated.


Assuntos
Lentes , Magnetismo/instrumentação , Sistemas Microeletromecânicos/instrumentação , Microscopia Confocal/instrumentação , Microtomia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
10.
Biomed Microdevices ; 13(4): 641-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21468630

RESUMO

A fiber optic confocal catheter with a micro scanning lens was developed for real-time and non-contact thickness measurement of biological tissue. The catheter has an outer diameter and rigid length of 4.75 mm and 30 mm respectively and is suitable for endoscopic applications. The catheter incorporates a lens actuator that is fabricated using microelectromechanical systems (MEMS) technology. The lens is mounted on a folded flexure made of nickel and is actuated by magnetic field. Thickness measurements are performed by positioning the catheter in front of the tissue and actuating the lens scanner in the out-of-plane direction. A single-mode optical fiber (SMF) is used to deliver a 785 nm laser beam to the tissue and relay back the reflected light from the tissue to a photomultiplier tube (PMT). When the focal point of the scanning lens passes tissue boundaries, intensity peaks are detected in the reflecting signal. Tissue thickness is calculated using its index of refraction and the lens displacement between intensity peaks. The utility of the confocal catheter was demonstrated by measuring the cornea and skin thicknesses of a mouse. Measurement uncertainty of 8.86 µm within 95% confidence interval has been achieved.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Microscopia Confocal/instrumentação , Microtecnologia/métodos , Animais , Catéteres , Córnea/anatomia & histologia , Endoscopia/métodos , Desenho de Equipamento , Feminino , Lentes , Camundongos , Camundongos Endogâmicos C3H , Microscopia Confocal/métodos , Pele/anatomia & histologia
11.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833197

RESUMO

There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes.

12.
Adv Colloid Interface Sci ; 285: 102280, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010575

RESUMO

Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Propriedades de Superfície
13.
PLoS One ; 15(4): e0230966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32243463

RESUMO

Various types of stem cells and non-stem cells have been shown to differentiate or transdifferentiate into cardiomyocytes by way of co-culture with appropriate inducer cells. However, there is a limited demonstration of a co-culture induction system utilizing stem cell-derived cardiomyocytes as a stimulatory source for cardiac reprogramming (of stem cells or otherwise). In this study, we utilized an inductive co-culture method to show that previously differentiated induced pluripotent stem (iPS) cell-derived cardiomyocytes (iCMs), when co-cultivated with iPS cells, constituted a sufficient stimulatory system to induce cardiac differentiation. To enable tracking of both cell populations, we utilized GFP-labeled iPS cells and non-labeled iCMs pre-differentiated using inhibitors of GSK and Wnt signaling. Successful differentiation was assessed by the exhibition of spontaneous self-contractions, structural organization of α-actinin labeled sarcomeres, and expression of cardiac specific markers cTnT and α-actinin. We found that iCM-iPS cell-cell contact was essential for inductive differentiation, and this required overlaying already adherent iPS cells with iCMs. Importantly, this process was achieved without the exogenous addition of pathway inhibitors and morphogens, suggesting that 'older' iCMs serve as an adequate stimulatory source capable of recapitulating the necessary culture environment for cardiac differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Actinina/metabolismo , Benzotiazóis/farmacologia , Biomarcadores/metabolismo , Comunicação Celular , Diferenciação Celular , Linhagem Celular , Transdiferenciação Celular , Reprogramação Celular , Técnicas de Reprogramação Celular/métodos , Técnicas de Cocultura/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
14.
Micromachines (Basel) ; 9(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-30393302

RESUMO

Polymeric drug delivery systems usually deliver drugs by diffusion with an initial burst of release followed by a slower prolonged release phase. An optimal system would release exact doses of drugs using an on-demand external actuation system. The purpose of this study was to design and characterize a novel drug-delivery device that utilizes near infrared (NIR 800 nm) laser-actuated drug release. The device was constructed from biocompatible polymers comprising a reservoir of drug covered by an elastic perforated diaphragm composed of a bilayer of two polymers with different thermal expansion coefficients (ethylenevinylacetate (EVA) and polydimethylsiloxane (PDMS) containing gold nanoparticles). Upon illumination with a NIR laser, the gold nanoparticles rapidly heated the bilayer resulting in bending and a drug-pumping action through the perforated bilayer, following sequential laser-actuation cycles. Devices filled with the anti-proliferative drug docetaxel were seen to release only small amounts of drug by diffusion but to release large and reproducible amounts of drug over 20 s laser-actuation periods. Because NIR 800 nm is tissue-penetrating without heating tissue, suitable geometry drug-delivery devices might be implanted in the body to be actuated by an externally applied NIR laser to allow for on-demand exact drug dosing in vivo.

15.
Acta Biomater ; 70: 98-109, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447960

RESUMO

Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. STATEMENT OF SIGNIFICANCE: In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications.


Assuntos
Materiais Revestidos Biocompatíveis , Hidrogéis , Teste de Materiais , Alginatos/química , Alginatos/farmacologia , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Células HEK293 , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Nylons/química , Nylons/farmacologia , Poli-Hidroxietil Metacrilato/química , Poli-Hidroxietil Metacrilato/farmacologia
16.
Opt Express ; 15(18): 11154-66, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19547470

RESUMO

A magnetically actuated MEMS scanner with a microfabricated ferromagnetic nickel platform and thermosetting polydimethylsiloxane (PDMS) microlens is demonstrated. The device is driven by an external AC magnetic field, eliminating chip circuitry and thermal deformation from joule heating. The resonant frequency of 215.2 Hz and scanning angle of 23 of the scanner have been demonstrated. Experimental studies and optical modeling have shown that this microlens scanner achieves a scanning range of 125 mum when actuated by an external magnetic field of 22.2x10-3 Tesla flux density. The device has potential applications in in vivo medical imaging for minimally invasive diagnoses.

17.
IEEE Trans Biomed Eng ; 54(6 Pt 2): 1153-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17549907

RESUMO

Sonodynamic therapy is a cancer treatment method that uses macro scale ultrasound devices to enhance the cytotoxic efficacy of anticancer drugs, such as doxorubicin [1]. In this paper, unconventional, miniature ultrasound transducers (5 mm x 5 mm x 0.5 mm) were used to create a tone-burst ultrasound (4 MHz, 32 Watt/cm(2), 20% duty cycle, 50 ms burst period). It was found that the transducer significantly (p < 0.01) enhanced the immediate cells lysis when combining with doxorubicin (20 microM) in human prostate cancer cells (PC3). With a 30-s ultrasound exposure, the immediate cell lysis and long-term cytotoxicity were enhanced by 70% and 83%, respectively, compared to controls. We have demonstrated that ultrasound in combination with doxorubicin could strongly inhibit tumour cell proliferation in vitro at lower doses of the drug. This work is a first step towards a microelectromechanical system (MEMS)-based, implantable micro-ultrasonic transducers (MUTs) that could be used in sonodynamic therapy.


Assuntos
Doxorrubicina/administração & dosagem , Eletroquimioterapia/instrumentação , Neoplasias da Próstata/tratamento farmacológico , Transdutores , Terapia por Ultrassom/instrumentação , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacocinética , Eletroquimioterapia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Masculino , Taxa de Depuração Metabólica , Miniaturização , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Terapia por Ultrassom/métodos
18.
Colloids Surf B Biointerfaces ; 59(1): 67-73, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17532612

RESUMO

A novel anti-fouling mechanism based on the combined effects of electric field and shear stress is reported. A lead zirconate titanate (PZT) composite is used to generate an electric field and an acoustic streaming shear stress that increase nanomolecule desorption. In vitro characterization showed that (1) 58+/-5.5% and 39+/-5.2% of adsorbed bovine serum albumin (BSA) proteins can be effectively removed from fired silver and titanium coated PZT plate, respectively; and (2) 43+/-9.7% of the anti-mouse immunoglobulin G (IgG) can be effectively removed from a fired silver coated PZT plate. Theoretical calculations on protein-surface interactions (van der Waals (VDW), electrostatic, and hydrophobic) and shear stress describe the mechanism for protein desorption from model surfaces. We have shown that the applied electric potential is the major contributor in reducing the adhesive force between protein and surface, and the desorbed protein is taken away by acoustic streaming shear stress. We strongly believe that the present method offers the possibility of minimizing nanomolecule adsorption without further surface treatment.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas/química , Adsorção , Animais , Bovinos , Eletricidade , Imunoglobulina G/química , Técnicas In Vitro , Chumbo , Camundongos , Nanotecnologia , Soroalbumina Bovina/química , Prata , Eletricidade Estática , Propriedades de Superfície , Termodinâmica , Titânio , Vibração , Zircônio
19.
J Mater Chem B ; 5(22): 4025-4030, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264134

RESUMO

A Janus polymer film capable of rapid and reversible folding by triggering with organic solvents is prepared through a template method. Different from most self-folding films with layered structures of different compositions, the reported film can achieve folding function with just a single component by forming a Janus structure. The solvent-driven folding of the film can be remotely controlled not only in air but also in water. In addition, the film is easy to integrate with other materials to fabricate actuators with specific functions for diverse applications.

20.
J Mater Chem B ; 4(46): 7415-7422, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263742

RESUMO

Numerous different delivery systems have been developed for local administration of drugs. However, their service lives generally depend on the payload depletion time and most of them are designed for one time use due to lack of drug replenishment abilities. To address this issue, a refillable magnetic porous polydimethylsiloxane (PDMS) capsule is proposed for remotely controlled drug delivery applications. An inner cavity is built in the sponge scaffold to provide space for drug storage and the refilling is accomplished by injecting drugs with a syringe. The rapid and reversible deformation of the magnetic porous structure under a magnetic field offers a controlled pumping force to push drugs out of the capsule. In this work, low molecular weight (methylene blue, MB, 320 g mol-1) and high molecular weight (bovine serum albumin, BSA, 67 000 g mol-1) molecules were used as model compounds to test and verify the operational principle. This proof-of-concept study has demonstrated the capability of the refillable porous capsule in controlled drug delivery under external magnetic stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA