Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Radiat Oncol ; 34(1): 120-128, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105086

RESUMO

The recent introduction of a commercial 1.5 T MR-linac system has considerably improved the image quality of the patient acquired in the treatment unit as well as enabling online adaptive radiation therapy (oART) treatment strategies. Quality Assurance (QA) of this new technology requires new methodology that allows for the high field MR in a linac environment. The presence of the magnetic field requires special attention to the phantoms, detectors, and tools to perform QA. Due to the design of the system, the integrated megavoltage imager (MVI) is essential for radiation beam calibrations and QA. Additionally, the alignment between the MR image system and the radiation isocenter must be checked. The MR-linac system has vendor-supplied phantoms for calibration and QA tests. However, users have developed their own routine QA systems to independently check that the machine is performing as required, as to ensure we are able to deliver the intended dose with sufficient certainty. The aim of this work is therefore to review the MR-linac specific QA procedures reported in the literature.


Assuntos
Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
2.
Phys Imaging Radiat Oncol ; 27: 100481, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37655122

RESUMO

Hybrid systems that combine Magnetic Resonance Imaging (MRI) and linear accelerators are available clinically to guide and adapt radiotherapy. Vendor-approved MRI sequences are provided, however alternative sequences may offer advantages. The aim of this study was to develop a systematic approach for non-vendor sequence evaluation, to determine safety, accuracy and overall clinical application of two potential sequences for bladder cancer MRI guided radiotherapy. Non-vendor sequences underwent and passed clinical image qualitative review, phantom quality assurance, and radiotherapy planning assessments. Volunteer workflow tests showed the potential for one sequence to reduce workflow time by 27% compared to the standard vendor sequence.

3.
Radiother Oncol ; 180: 109457, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608770

RESUMO

BACKGROUND AND PURPOSE: The implementation of MRI-guided online adaptive radiotherapy has facilitated the extension of therapeutic radiographers' roles to include contouring, thus releasing the clinician from attending daily treatment. Following undergoing a specifically designed training programme, an online interobserver variability study was performed. MATERIALS AND METHODS: 117 images from six patients treated on a MR Linac were contoured online by either radiographer or clinician and the same images contoured offline by the alternate profession. Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) and volume metrics were used to analyse contours. Additionally, the online radiographer contours and optimised plans (n = 59) were analysed using the offline clinician defined contours. After clinical implementation of radiographer contouring, target volume comparison and dose analysis was performed on 20 contours from five patients. RESULTS: Comparison of the radiographers' and clinicians' contours resulted in a median (range) DSC of 0.92 (0.86 - 0.99), median (range) MDA of 0.98 mm (0.2-1.7) and median (range) HD of 6.3 mm (2.5-11.5) for all 117 fractions. There was no significant difference in volume size between the two groups. Of the 59 plans created with radiographer online contours and overlaid with clinicians' offline contours, 39 met mandatory dose constraints and 12 were acceptable because 95 % of the high dose PTV was covered by 95 % dose, or the high dose PTV was within 3 % of online plan. A clinician blindly reviewed the eight remaining fractions and, using trial quality assurance metrics, deemed all to be acceptable. Following clinical implementation of radiographer contouring, the median (range) DSC of CTV was 0.93 (0.88-1.0), median (range) MDA was 0.8 mm (0.04-1.18) and HD was 5.15 mm (2.09-8.54) respectively. Of the 20 plans created using radiographer online contours overlaid with clinicians' offline contours, 18 met the dosimetric success criteria, the remaining 2 were deemed acceptable by a clinician. CONCLUSION: Radiographer and clinician prostate and seminal vesicle contours on MRI for an online adaptive workflow are comparable and produce clinically acceptable plans. Radiographer contouring for prostate treatment on a MR-linac can be effectively introduced with appropriate training and evaluation. A DSC threshold for target structures could be implemented to streamline future training.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Masculino , Humanos , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Glândulas Seminais , Pelve , Radioterapia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-36654720

RESUMO

The implementation of MRI-guided online adaptive radiotherapy has enabled extension of therapeutic radiographers' roles to include contouring. An offline interobserver variability study compared five radiographers' and five clinicians' contours on 10 MRIs acquired on a MR-Linac from 10 patients. All contours were compared to a "gold standard" created from an average of clinicians' contours. The median (range) DSC of radiographers' and clinicians' contours compared to the "gold standard" was 0.91 (0.86-0.96), and 0.93 (0.88-0.97) respectively illustrating non-inferiority of the radiographers' contours to the clinicians. There was no significant difference in HD, MDA or volume size between the groups.

5.
Clin Transl Radiat Oncol ; 23: 35-42, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32395640

RESUMO

INTRODUCTION: MR-guided adapted radiotherapy (MRgART) using a high field MR-linac has recently become available. We report the estimated delivered fractional dose of the first five prostate cancer patients treated at our centre using MRgART and compare this to C-Arm linac daily Image Guided Radiotherapy (IGRT). METHODS: Patients were treated using adapted treatment plans shaped to their daily anatomy. The treatments were recalculated on an MR image acquired immediately prior to treatment delivery in order to estimate the delivered fractional dose. C-arm linac non-adapted VMAT treatment plans were recalculated on the same MR images to estimate the fractional dose that would have been delivered using conventional radiotherapy techniques using a daily IGRT protocol. RESULTS: 95% and 93% of mandatory target coverage objectives and organ at risk dose constraints were achieved by MRgART and C-arm linac delivered dose estimates, respectively. Both delivery techniques were estimated to have achieved 98% of mandatory Organ At Risk (OAR) dose constraints whereas for the target clinical goals, 86% and 80% were achieved by MRgART and C-arm linac delivered dose estimates. CONCLUSIONS: Prostate MRgART can be delivered using the a high field MR-linac. Radiotherapy performed on a C-arm linac offers a good solution for prostate cancer patients who present with favourable anatomy at the time of reference imaging and demonstrate stable anatomy throughout the course of their treatment. For patients with critical OARs abutting target volumes on their reference image we have demonstrated the potential for a target dose coverage improvement for MRgART compared to C-arm linac treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA