Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 294(14): 5309-5320, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30647134

RESUMO

Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are essential components of the mitochondrial translation machinery. The correlation of mitochondrial disorders with mutations in these enzymes has raised the interest of the scientific community over the past several years. Most surprising has been the wide-ranging presentation of clinical manifestations in patients with mt-aaRS mutations, despite the enzymes' common biochemical role. Even among cases where a common physiological system is affected, phenotypes, severity, and age of onset varies depending on which mt-aaRS is mutated. Here, we review work done thus far and propose a categorization of diseases based on tissue specificity that highlights emerging patterns. We further discuss multiple in vitro and in cellulo efforts to characterize the behavior of WT and mutant mt-aaRSs that have shaped hypotheses about the molecular causes of these pathologies. Much remains to do in order to complete our understanding of these proteins. We expect that futher work is likely to result in the discovery of new roles for the mt-aaRSs in addition to their fundamental function in mitochondrial translation, informing the development of treatment strategies and diagnoses.


Assuntos
Aminoacil-tRNA Sintetases , Doenças Genéticas Inatas , Doenças Mitocondriais , Proteínas Mitocondriais , Mutação , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Nucleic Acids Res ; 46(2): 849-860, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29228266

RESUMO

Accuracy of protein synthesis is enabled by the selection of amino acids for tRNA charging by aminoacyl-tRNA synthetases (ARSs), and further enhanced by the proofreading functions of some of these enzymes for eliminating tRNAs mischarged with noncognate amino acids. Mouse models of editing-defective cytoplasmic alanyl-tRNA synthetase (AlaRS) have previously demonstrated the importance of proofreading for cytoplasmic protein synthesis, with embryonic lethal and progressive neurodegeneration phenotypes. Mammalian mitochondria import their own set of nuclear-encoded ARSs for translating critical polypeptides of the oxidative phosphorylation system, but the importance of editing by the mitochondrial ARSs for mitochondrial proteostasis has not been known. We demonstrate here that the human mitochondrial AlaRS is capable of editing mischarged tRNAs in vitro, and that loss of the proofreading activity causes embryonic lethality in mice. These results indicate that tRNA proofreading is essential in mammalian mitochondria, and cannot be overcome by other quality control mechanisms.


Assuntos
Alanina-tRNA Ligase/genética , Mitocôndrias/genética , Edição de RNA , RNA de Transferência/genética , Aminoacilação de RNA de Transferência/genética , Alanina-tRNA Ligase/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Mamíferos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mutação , Biossíntese de Proteínas/genética , RNA de Transferência/metabolismo , Homologia de Sequência de Aminoácidos
3.
Arch Biochem Biophys ; 602: 95-105, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968773

RESUMO

Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.


Assuntos
Modelos Moleculares , RNA de Transferência/química , RNA de Transferência/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Simulação por Computador , Conformação Proteica
4.
Artigo em Inglês | MEDLINE | ID: mdl-33884071

RESUMO

The COVID-19 pandemic has challenged undergraduate instructors and students in an unprecedented manner. Each has needed to find creative ways to continue the engaged teaching and learning process in an environment defined by physical separation and emotional anxiety and uncertainty. As a potential tool to meet this challenge, we developed a set of curricular materials that combined our respective life science teaching interests with the real-time scientific problem of the COVID-19 pandemic in progress. Discrete modules were designed that are engaging to students, implement active learning-based coursework in a variety of institutional and learning settings, and can be used either in person or remotely. The resulting interdisciplinary curriculum, dubbed "COVID-360," enables instructors to select from a menu of curricular options that best fit their course content, desired activities, and mode of class delivery. Here we describe how we devised the COVID-360 curriculum and how it represents our efforts to creatively and effectively respond to the instructional needs of diverse students in the face of an ongoing instructional crisis.

5.
Enzymes ; 48: 175-206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33837704

RESUMO

In all eukaryotic cells, protein synthesis occurs not only in the cytosol, but also in the mitochondria. Translation of mitochondrial genes requires a set of aminoacyl-tRNA synthetases, many of which are often specialized for organellar function. These enzymes have evolved unique mechanisms for tRNA recognition and for ensuring fidelity of translation. Mutations of human mitochondrial synthetases are associated with a wide range of pathogenic phenotypes, both highlighting the importance of their role in maintaining the cellular "powerhouse" and suggesting additional cellular roles.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacil-tRNA Sintetases/genética , Citosol , Células Eucarióticas , Humanos , Mitocôndrias/genética , RNA de Transferência
6.
Nat Commun ; 11(1): 969, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080176

RESUMO

Metazoan complexity and life-style depend on the bioenergetic potential of mitochondria. However, higher aerobic activity and genetic drift impose strong mutation pressure and risk of irreversible fitness decline in mitochondrial (mt)DNA-encoded genes. Bilaterian mitochondria-encoded tRNA genes, key players in mitochondrial activity, have accumulated mutations at significantly higher rates than their cytoplasmic counterparts, resulting in foreshortened and fragile structures. Here we show that fragility of mt tRNAs coincided with the evolution of bilaterian animals. We demonstrate that bilaterians compensated for this reduced structural complexity in mt tRNAs by sequence-independent induced-fit adaption to the cognate mitochondrial aminoacyl-tRNA synthetase (aaRS). Structural readout by nuclear-encoded aaRS partners relaxed the sequence constraints on mt tRNAs and facilitated accommodation of functionally disruptive mutational insults by cis-acting epistatic compensations. Our results thus suggest that mutational freedom in mt tRNA genes is an adaptation to increased mutation pressure that was associated with the evolution of animal complexity.


Assuntos
Mitocôndrias/genética , Mutação , RNA Mitocondrial/genética , RNA de Transferência/genética , Adaptação Fisiológica/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epistasia Genética , Evolução Molecular , Mitocôndrias/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Estabilidade de RNA/genética , RNA Mitocondrial/química , RNA de Transferência/química , Eletricidade Estática
7.
Biochem Mol Biol Educ ; 36(3): 209-16, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-21591193

RESUMO

Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here, students use structural data to design a site-directed mutant and make the mutation using the Künkel method. A second, silent mutant, that creates or removes a restriction site, is simultaneously introduced. Restriction digestion and agarose gel electrophoresis are used to assess the success of mutagenesis. Placing these procedures in the context of continuous, student-driven project serves to create a "research style" laboratory environment.

8.
Front Genet ; 6: 21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705216

RESUMO

The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

9.
J Biol Chem ; 281(38): 27862-72, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16864571

RESUMO

Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.


Assuntos
Aminoacil-tRNA Sintetases/fisiologia , Edição de RNA , Aminoacilação de RNA de Transferência , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Hidrólise , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA