Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 25(7): 718-727, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278683

RESUMO

BACKGROUND: Adoptive T cell therapy (ATCT) has been successful in treating hematological malignancies and is currently under investigation for solid-tumor therapy. In contrast to existing chimeric antigen receptor (CAR) T cell and/or antigen-specific T cell approaches, which require known targets, and responsive to the need for targeting a broad repertoire of antigens in solid tumors, we describe the first use of immunostimulatory photothermal nanoparticles to generate tumor-specific T cells. METHODS: Specifically, we subject whole tumor cells to Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) before culturing with dendritic cells (DCs), and subsequent stimulation of T cells. This strategy differs from previous approaches using tumor cell lysates because we use nanoparticles to mediate thermal and immunogenic cell death in tumor cells, rendering them enhanced antigen sources. RESULTS: In proof-of-concept studies using two glioblastoma (GBM) tumor cell lines, we first demonstrated that when PBNP-PTT was administered at a "thermal dose" targeted to induce the immunogenicity of U87 GBM cells, we effectively expanded U87-specific T cells. Further, we found that DCs cultured ex vivo with PBNP-PTT-treated U87 cells enabled 9- to 30-fold expansion of CD4+ and CD8+ T cells. Upon co-culture with target U87 cells, these T cells secreted interferon-É£ in a tumor-specific and dose-dependent manner (up to 647-fold over controls). Furthermore, T cells manufactured using PBNP-PTT ex vivo expansion elicited specific cytolytic activity against target U87 cells (donor-dependent 32-93% killing at an effector to target cell (E:T) ratio of 20:1) while sparing normal human astrocytes and peripheral blood mononuclear cells from the same donors. In contrast, T cells generated using U87 cell lysates expanded only 6- to 24-fold and killed 2- to 3-fold less U87 target cells at matched E:T ratios compared with T cell products expanded using the PBNP-PTT approach. These results were reproducible even when a different GBM cell line (SNB19) was used, wherein the PBNP-PTT-mediated approach resulted in a 7- to 39-fold expansion of T cells, which elicited 25-66% killing of the SNB19 cells at an E:T ratio of 20:1, depending on the donor. CONCLUSIONS: These findings provide proof-of-concept data supporting the use of PBNP-PTT to stimulate and expand tumor-specific T cells ex vivo for potential use as an adoptive T cell therapy approach for the treatment of patients with solid tumors.


Assuntos
Glioblastoma , Nanopartículas , Humanos , Leucócitos Mononucleares , Imunoterapia Adotiva/métodos , Linfócitos T CD8-Positivos , Glioblastoma/terapia , Linhagem Celular Tumoral
2.
Nanomedicine (Lond) ; : 1-16, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225150

RESUMO

Aim: We investigate combining Prussian Blue nanoparticles (PBNPs), as photothermal therapy (PTT) agents, with agonistic CD137 antibodies (αCD137) on a single nanoparticle platform to deliver non-toxic, anti-tumor efficacy in SM1 murine melanoma.Methods: We electrostatically coated PBNPs with αCD137 (αCD137-PBNPs) and quantified their physicochemical characteristics, photothermal and co-stimulatory capabilities. Next, we tested the efficacy and hepatotoxicity of PTT using αCD137-PBNPs (αCD137-PBNP-PTT) in SM1 tumor-bearing mice.Results: The αCD137-PBNPs retained both the photothermal and agonistic properties of the PBNPs and αCD137, respectively. In vivo, SM1 tumor-bearing mice treated with αCD137-PBNP-PTT exhibited a significantly higher survival rate (50%) without hepatotoxicity, compared with control treatments.Conclusion: These data suggest the potential utility of co-localizing PBNP-PTT with αCD137-based agonism as a novel combination nanomedicine.


Photothermal therapy is a strategy to kill cancer cells that uses nanoparticles and lasers to generate heat. Here, we combine photothermal therapy with an immunotherapy that activates the body's T cells, a type of white blood cell, on a single platform, to treat melanoma, a type of skin cancer in a mouse. We find that this novel nanoparticle-based platform significantly improves the survival of mice bearing melanoma, without increasing liver toxicity.

3.
Bioeng Transl Med ; 9(3): e10639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38818122

RESUMO

Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) is an effective tumor treatment capable of eliciting an antitumor immune response. Motivated by the ability of PBNP-PTT to potentiate endogenous immune responses, we recently demonstrated that PBNP-PTT could be used ex vivo to generate tumor-specific T cells against glioblastoma (GBM) cell lines as an adoptive T cell therapy (ATCT). In this study, we further developed this promising T cell development platform. First, we assessed the phenotype and function of T cells generated using PBNP-PTT. We observed that PBNP-PTT facilitated CD8+ T cell expansion from healthy donor PBMCs that secreted IFNγ and TNFα and upregulated CD107a in response to engagement with target U87 cells, suggesting specific antitumor T cell activation and degranulation. Further, CD8+ effector and effector memory T cell populations significantly expanded after co-culture with U87 cells, consistent with tumor-specific effector responses. In orthotopically implanted U87 GBM tumors in vivo, PBNP-PTT-derived T cells effectively reduced U87 tumor growth and generated long-term survival in >80% of tumor-bearing mice by Day 100, compared to 0% of mice treated with PBS, non-specific T cells, or T cells expanded from lysed U87 cells, demonstrating an enhanced antitumor efficacy of this ATCT platform. Finally, we tested the generalizability of our approach by generating T cells targeting medulloblastoma (D556), breast cancer (MDA-MB-231), neuroblastoma (SH-SY5Y), and acute monocytic leukemia (THP-1) cell lines. The resulting T cells secreted IFNγ and exerted increased tumor-specific cytolytic function relative to controls, demonstrating the versatility of PBNP-PTT in generating tumor-specific T cells for ATCT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA