Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Catheter Cardiovasc Interv ; 103(2): 326-334, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38149722

RESUMO

BACKGROUND: Atrioventricular valve regurgitation (AVVR) is a devastating complication in children and young adults with congenital heart disease (CHD), particularly in patients with single ventricle physiology. Transcatheter edge-to-edge repair (TEER) is a rapidly expanding, minimally invasive option for the treatment of AVVR in adults that avoids the morbidity and mortality associated with open heart surgery. However, application of TEER in in CHD and in children is quite novel. We describe the development of a peri-procedural protocol including image-derived pre-intervention simulation, with successful application to four patients. AIMS: To describe the initial experience using the MitraClip system for TEER of dysfunctional systemic atrioventricular valves in patients with congential heart disease within a pediatric hospital. METHODS: A standardized screening and planning process was developed using cardiac magnetic resonance imaging, three dimensional echocardiography and both virtual and physical simulation. Procedures were performed using the MitraClip G4 system and patients were clinically followed post-intervention. RESULTS: A series of four CHD patients with at least severe AVVR were screened for suitability for TEER with the MitraClip system: three patients had single ventricle physiology and Fontan palliation, and one had repair of a common atrioventricular canal defect. Each patient had at least severe systemic AVVR and was considered at prohibitively high risk for surgical repair. Each patient underwent a standardized preprocedural screening protocol and image-derived modeling followed by the TEER procedure with successful clip placement at the intended location in all cases. CONCLUSIONS: The early results of our protocolized efforts to introduce TEER repair of severe AV valve regurgitation with MitraClip into the CHD population within our institution are encouraging. Further investigations of the use of TEER in this challenging population are warranted.


Assuntos
Técnica de Fontan , Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Criança , Humanos , Hospitais Pediátricos , Resultado do Tratamento , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Defeitos dos Septos Cardíacos/cirurgia , Técnica de Fontan/efeitos adversos , Técnica de Fontan/métodos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia
2.
J Biomech Eng ; 144(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510823

RESUMO

Atrioventricular valve regurgitation is a significant cause of morbidity and mortality in patients with acquired and congenital cardiac valve disease. Image-derived computational modeling of atrioventricular valves has advanced substantially over the last decade and holds particular promise to inform valve repair in small and heterogeneous populations, which are less likely to be optimized through empiric clinical application. While an abundance of computational biomechanics studies has investigated mitral and tricuspid valve disease in adults, few studies have investigated its application to vulnerable pediatric and congenital heart populations. Further, to date, investigators have primarily relied upon a series of commercial applications that are neither designed for image-derived modeling of cardiac valves nor freely available to facilitate transparent and reproducible valve science. To address this deficiency, we aimed to build an open-source computational framework for the image-derived biomechanical analysis of atrioventricular valves. In the present work, we integrated an open-source valve modeling platform, SlicerHeart, and an open-source biomechanics finite element modeling software, FEBio, to facilitate image-derived atrioventricular valve model creation and finite element analysis. We present a detailed verification and sensitivity analysis to demonstrate the fidelity of this modeling in application to three-dimensional echocardiography-derived pediatric mitral and tricuspid valve models. Our analyses achieved an excellent agreement with those reported in the literature. As such, this evolving computational framework offers a promising initial foundation for future development and investigation of valve mechanics, in particular collaborative efforts targeting the development of improved repairs for children with congenital heart disease.


Assuntos
Insuficiência da Valva Mitral , Valva Tricúspide , Fenômenos Biomecânicos , Criança , Análise de Elementos Finitos , Humanos , Insuficiência da Valva Mitral/cirurgia , Software , Valva Tricúspide/diagnóstico por imagem
3.
ArXiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36798457

RESUMO

Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated 1) the influence of tissue extensibility and 2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.

4.
Ann Thorac Surg Short Rep ; 1(1): 40-45, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909146

RESUMO

Background: Transcatheter edge-to-edge valve repair (TEER) is a complex procedure requiring delivery and alignment of the device to the target valve, which can be challenging in atypical or surgically palliated anatomy. We demonstrate application of virtual and physical simulation to plan optimal TEER access and catheter path in normal and congenitally abnormal cardiac anatomy. Methods: Three heart models were created from three-dimensional (3D) images and 3D printed, including two with congenital heart disease. TEER catheter course was simulated both virtually and physically using a commercial TEER system. Results: We demonstrate application of modeling in three patients, including two with congenital heart disease and a Fontan circulation. Access site and pathway to device delivery was simulated by members of a multidisciplinary valve team. Virtual and physical simulation were compared. Conclusions: Virtual and physical simulation of TEER using 3D printed heart models is feasible and may be beneficial for planning and simulation, particularly in patients with complex anatomy. Future work is required to demonstrate application in the clinical setting.

5.
J Mech Behav Biomed Mater ; 142: 105858, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099920

RESUMO

Advances in three-dimensional imaging provide the ability to construct and analyze finite element (FE) models to evaluate the biomechanical behavior and function of atrioventricular valves. However, while obtaining patient-specific valve geometry is now possible, non-invasive measurement of patient-specific leaflet material properties remains nearly impossible. Both valve geometry and tissue properties play a significant role in governing valve dynamics, leading to the central question of whether clinically relevant insights can be attained from FE analysis of atrioventricular valves without precise knowledge of tissue properties. As such we investigated (1) the influence of tissue extensibility and (2) the effects of constitutive model parameters and leaflet thickness on simulated valve function and mechanics. We compared metrics of valve function (e.g., leaflet coaptation and regurgitant orifice area) and mechanics (e.g., stress and strain) across one normal and three regurgitant mitral valve (MV) models with common mechanisms of regurgitation (annular dilation, leaflet prolapse, leaflet tethering) of both moderate and severe degree. We developed a novel fully-automated approach to accurately quantify regurgitant orifice areas of complex valve geometries. We found that the relative ordering of the mechanical and functional metrics was maintained across a group of valves using material properties up to 15% softer than the representative adult mitral constitutive model. Our findings suggest that FE simulations can be used to qualitatively compare how differences and alterations in valve structure affect relative atrioventricular valve function even in populations where material properties are not precisely known.


Assuntos
Insuficiência da Valva Mitral , Valva Mitral , Adulto , Humanos
6.
Front Cardiovasc Med ; 9: 886549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148054

RESUMO

Cardiovascular disease is a significant cause of morbidity and mortality in the developed world. 3D imaging of the heart's structure is critical to the understanding and treatment of cardiovascular disease. However, open-source tools for image analysis of cardiac images, particularly 3D echocardiographic (3DE) data, are limited. We describe the rationale, development, implementation, and application of SlicerHeart, a cardiac-focused toolkit for image analysis built upon 3D Slicer, an open-source image computing platform. We designed and implemented multiple Python scripted modules within 3D Slicer to import, register, and view 3DE data, including new code to volume render and crop 3DE. In addition, we developed dedicated workflows for the modeling and quantitative analysis of multi-modality image-derived heart models, including heart valves. Finally, we created and integrated new functionality to facilitate the planning of cardiac interventions and surgery. We demonstrate application of SlicerHeart to a diverse range of cardiovascular modeling and simulation including volume rendering of 3DE images, mitral valve modeling, transcatheter device modeling, and planning of complex surgical intervention such as cardiac baffle creation. SlicerHeart is an evolving open-source image processing platform based on 3D Slicer initiated to support the investigation and treatment of congenital heart disease. The technology in SlicerHeart provides a robust foundation for 3D image-based investigation in cardiovascular medicine.

7.
J Cell Biochem ; 112(11): 3393-405, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21769914

RESUMO

The vitamin D(3) receptor (VDR) is present in all microenvironments of the breast, yet it is hypothesized to signal through the epithelium to regulate hormone induced growth and differentiation. However, the influence or contribution of the other microenvironments within the breast that express VDR, like the breast adipose tissue, are yet to be investigated. We hypothesized that the breast adipocytes express the signaling components necessary to participate in vitamin D(3) synthesis and signaling via VDR, modulating ductal epithelial cell growth and differentiation. We utilized human primary breast adipocytes and VDR wild type (WT) and knockout (KO) mice to address whether breast adipocytes participate in vitamin D(3) -induced growth regulation of the ductal epithelium. We report in this study that breast primary adipocytes express VDR, CYP27B1 (1α-hydroxylase, 1α-OHase), the enzyme that generates the biologically active VDR ligand, 1α,25-dihydroxyvitamin D(3) (1,25D(3) ), and CYP24 (24-hydroxylase, 24-OHase), a VDR-1,25D(3) induced target gene. Furthermore, the breast adipocytes participate in bioactivating 25-hydroxyvitamin D(3) (25D(3) ) to the active ligand, 1,25D(3) , and secreting it to the surrounding microenvironment. In support of this concept, we report that purified mammary ductal epithelial fragments (organoids) from VDR KO mice, co-cultured with WT breast adipocytes, were growth inhibited upon treatment with 25D(3) or 1,25D(3) compared to vehicle alone. Collectively, these results demonstrate that breast adipocytes bioactivate 25D(3) to 1,25D(3) , signal via VDR within the adipocytes, and release an inhibitory factor that regulates ductal epithelial cell growth, suggesting that breast adipose tissue contributes to vitamin D(3) -induced growth regulation of ductal epithelium.


Assuntos
Adipócitos/metabolismo , Calcifediol/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/citologia , Receptores de Calcitriol/metabolismo , Adipócitos/citologia , Animais , Sequência de Bases , Biotransformação , Diferenciação Celular , Divisão Celular , Linhagem Celular , Técnicas de Cocultura , Primers do DNA , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA