Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Microb Ecol ; 75(3): 761-770, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29022063

RESUMO

Methanotrophs are important microbial communities in coastal ecosystems. They reduce CH4 emission in situ, which is influenced by soil conditions. This study aimed to understand the differences in active aerobic methanotrophic communities in mangrove forest soils experiencing different inundation frequency, i.e., in soils from tidal mangroves, distributed at lower elevations, and from dwarf mangroves, distributed at higher elevations. Labeling of pmoA gene of active methanotrophs using DNA-based stable isotope probing (DNA-SIP) revealed that methanotrophic activity was higher in the dwarf mangrove soils than in the tidal mangrove soils, possibly because of the more aerobic soil conditions. Methanotrophs affiliated with the cluster deep-sea-5 belonging to type Ib methanotrophs were the most dominant methanotrophs in the fresh mangrove soils, whereas type II methanotrophs also appeared in the fresh dwarf mangrove soils. Furthermore, Methylobacter and Methylosarcina were the most important active methanotrophs in the dwarf mangrove soils, whereas Methylomonas and Methylosarcina were more active in the tidal mangrove soils. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene also confirmed similar differences in methanotrophic communities at the different locations. However, several unclassified methanotrophic bacteria were found by 16S rRNA MiSeq sequencing in both fresh and incubated mangrove soils, implying that methanotrophic communities in mangrove forests may significantly differ from the methanotrophic communities documented in previous studies. Overall, this study showed the feasibility of 13CH4 DNA-SIP to study the active methanotrophic communities in mangrove forest soils and revealed differences in the methanotrophic community structure between coastal mangrove forests experiencing different tide frequencies.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Microbiota/genética , Rhizophoraceae/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Genes Bacterianos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Isótopos , Methylococcaceae/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Solo , Taiwan
2.
Water Environ Res ; 87(1): 88-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25630131

RESUMO

Soil clays (< 2,000 nm) (SC) and soil nanoclays (< 100 nm) (SNC) were used as adsorbents for removal of Cu(II) from aqueous solution. The experiments were conducted with variables including pH, interaction time, concentration of Cu(II) and temperature. Four kinetic models have been employed to investigate adsorption mechanisms, and the experimental data more closely resemble a second-order process of the kinetic model. Adsorption studies on soil nanoclays have been shown to be highly effective in removing of Cu(II) from aqueous solution. This adsorbent is widely available as a natural material, is mechanically stable and, most importantly, it is environmentally appealing. The maximum Cu(II) adsorption capacity of soil nanoclays (31.7 mg/g) is more than three times higher than natural soil clays (10.2 mg/g). Our study demonstrates that soil nanoclays can be used effectively for removal of Cu(II) from aqueous systems to achieve environmental cleaning purposes.


Assuntos
Silicatos de Alumínio/química , Cobre/química , Filtração/métodos , Nanopartículas/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Argila , Cinética , Modelos Teóricos , Tamanho da Partícula , Solo/química , Temperatura , Termodinâmica
3.
Microb Ecol ; 67(2): 421-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24072077

RESUMO

Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70% of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.


Assuntos
Acidobacteria/isolamento & purificação , Cryptomeria/microbiologia , Poaceae/microbiologia , Proteobactérias/isolamento & purificação , Microbiologia do Solo , Acidobacteria/genética , Biodiversidade , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Environ Monit Assess ; 186(5): 3091-114, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24415132

RESUMO

Severe rainstorms cause vertical mixing that modifies the internal dynamics (e.g., internal seiche, thermal structure, and velocity filed) in warm polymictic lakes. Yuan Yang Lake (YYL), a subtropical, subalpine, and seasonally stratified small lake in the north-central region of Taiwan, is normally affected by typhoons accompanied with strong wind and heavy rainfall during the summer and fall. In this study, we used the field data, statistical analysis, spectral analysis, and numerical modeling to investigate severe rainstorm-induced mixing in the lake. Statistical determination of the key meteorological and environmental conditions underlying the observed vertical mixing suggests that the vertical mixing, caused by heat loss during severe rainstorms, was likely larger than wind-induced mixing and that high inflow discharge strongly increased heat loss through advection heat. Spectral analysis revealed that internal seiches at the basin scale occurred under non-rainstorm meteorological conditions and that the internal seiches under the rainstorm were modified on the increase of the internal seiche frequencies. Based upon observed frequencies of the internal seiches, a two-dimensional model was simulated and then appropriate velocity patterns of the internal seiches were determined under non-rainstorm conditions. Moreover, the model implemented with inflow boundary condition was conducted for rainstorm events. The model results showed that the severe rainstorms promoted thermal destratification and changed vertical circulation of the basin-scale, internal seiche motion into riverine flow.


Assuntos
Monitoramento Ambiental , Lagos/química , Modelos Teóricos , Chuva , Poluentes da Água/análise , Estações do Ano , Taiwan , Vento
5.
J Pediatr ; 163(1): 100-3.e1, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23414661

RESUMO

OBJECTIVES: To investigate the characteristics of biliary atresia (BA) in preterm infants. STUDY DESIGN: Nationwide screening for BA in Taiwan using an infant stool color card was launched in 2004. We investigated the characteristics of BA in preterm infants using the national stool card registry center database. RESULTS: We identified 197 cases of BA from January 2004 to June 2010. The overall incidence of BA was 1.51 cases per 10,000 live births. The annual incidence of BA per 10,000 live births in term and preterm infants was 1.43 and 2.37 (P < .05), respectively. The sensitivity of detecting BA using stool cards before 60 days of age was 92.8% in term, and 96.3% in preterm infants. The Kasai operation before 60 days of age was 68.7% in term, and 44.4% in preterm infants. The jaundice-free rate at 3 months after the Kasai operation among infants with BA was 62.0% in term, and 37.0% in preterm infants (P = .015). The 18-month survival rate with native liver was higher in the term infants (72.7%) than that in the preterm infants (50.0%) (P = .043). CONCLUSION: The incidence of BA in preterm infants is more frequent than in term infants. The stool color card is sensitive to detecting BA in preterm infants. Preterm infants with BA were more prone to delayed Kasai operation and had poorer outcome.


Assuntos
Atresia Biliar/epidemiologia , Doenças do Prematuro/epidemiologia , Feminino , Inquéritos Epidemiológicos , Humanos , Incidência , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Retrospectivos , Taiwan/epidemiologia
6.
Opt Express ; 20(6): 6622-30, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418546

RESUMO

In this paper, to our best knowledge, it is the first time to present a precise simulation and detailed design of angular correlated color temperature (CCT) distribution of white LEDs covering a range of CCT from 2800K to 6500K. An optimized design of packaging structure with a silicone lens covering a phosphor dome performed an extreme small angular CCT deviation of 105K in the simulation and 182K in a corresponding real sample for a white LED with the CCT near 6500K.


Assuntos
Desenho Assistido por Computador , Iluminação/instrumentação , Modelos Teóricos , Semicondutores , Cor , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
7.
Sci Total Environ ; 803: 150044, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525696

RESUMO

A typhoon is extreme weather that flushes terrestrial carbon (C) loads and temporally mixes the entire water columns of lakes in subtropical regions. A C flux varies based on the trophic level associated with the ecological cycle related to hydraulic retention time (residence time). Herein, we sought to clarify how the hydraulic retention time and the disturbance from a typhoon affect the C flux regimes in two subtropical mountain lakes in a humid region of Taiwan with different trophic levels-oligotrophic and mesotrophic. We investigated the meteorological data and vertical profiles of the water temperature, dissolved inorganic carbon (DIC), dissolved organic C (DOC), and chlorophyll a (Chl. a) during the pre-typhoon period (April-July), during the typhoon period (August-November), and the post-typhoon period (December-March) for five years (2009-2010 and 2015-2017). We applied a three-dimensional environmental model (Fantom) to investigate the hydraulic retention effect on the net ecosystem production (NEP) using the residence time in stratified lakes. The results demonstrate that typhoon-induced mixing associated with the hydraulic retention effect plays one of the critical roles in controlling the NEP and C flux in shallow subtropical lakes.


Assuntos
Tempestades Ciclônicas , Lagos , Carbono , Ciclo do Carbono , Clorofila A , Ecossistema
8.
Microb Ecol ; 61(2): 429-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20878522

RESUMO

Forest management often results in changes in the soil and its microbial communities. In the present study, differences in the soil bacterial community caused by forest management practices were characterized using small subunit (SSU) ribosomal RNA (rRNA) gene clone libraries. The communities were from a native hardwood forest (HWD) and two adjacent conifer plantations in a low-elevation montane, subtropical experimental forest at the Lienhuachi Experimental Forest (LHCEF) in central Taiwan. At this locality, the elevation ranges from 600 to 950 m, the mean annual precipitation is 2,200 mm, the mean annual temperature is 20.8 °C, and the soil pH is 4. The conifer forests included a Cunninghamia konishii Hay (CNH) plantation of 40 years and an old growth Calocedrus formosana (Florin) Florin (CLC) forest of 80 years. A total of 476 clones were sequenced and assigned into 12 phylogenetic groups. Proteobacteria-affiliated clones (53%) predominated in the library from HWD soils. In contrast, Acidobacteria was the most abundant phylum and comprised 39% and 57% in the CLC and CNH libraries, respectively. Similarly, the most abundant OTUs in HWD soils were greatly reduced or absent in the CLC and CNH soils. Based on several diversity indices, the numbers of abundant OTUs and singletons, and rarefaction curves, the diversity of the HWD community (0.95 in evenness and Shannon diversity indices) was somewhat less than that in the CNH soils (0.97 in evenness and Shannon diversity indices). The diversity of the community in CLC soils was intermediate. The differences in diversity among the three communities may also reflect changes in abundances of a few OTUs. The CNH forest soil community may be still in a successional phase that is only partially stabilized after 40 years. Analysis of molecular variance also revealed that the bacterial community composition of HWD soils was significantly different from CLC and CNH soils (p = 0.001). These results suggest that the disturbance of forest conversion and tree species composition are important factors influencing the soil bacterial community among three forest ecosystems in the same climate.


Assuntos
Bactérias/classificação , Biota , Ecossistema , Microbiologia do Solo , Árvores/microbiologia , Bactérias/genética , DNA Bacteriano/genética , Biblioteca Gênica , Genes de RNAr , Filogenia , Análise de Sequência de DNA , Taiwan , Traqueófitas/microbiologia
9.
Bot Stud ; 62(1): 20, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855017

RESUMO

BACKGROUND: Phosphorus (P) is the limiting nutrient in many mature tropical forests. The ecological significance of declining P stocks as soils age is exacerbated by much of the remaining P being progressively sequestered. However, the details of how and where P is sequestered during the ageing in tropical forest soils remains unclear. RESULTS: We examined the relationships between various forms of the Fe and Al sesquioxides and the Hedley fractions of P in soils of an incipient ferralitic chronosequence on an altitudinal series of gently sloping benches on Green Island, off the southeastern coast of Taiwan. These soils contain limited amounts of easily exchangeable P. Of the sesquioxide variables, only Fe and Al crystallinities increased significantly with bench altitude/soil age, indicating that the ferralisation trend is weak. The bulk of the soil P was in the NaOH and residual extractable fractions, and of low lability. The P fractions that correlated best with the sesquioxides were the organic components of the NaHCO3 and NaOH extracts. CONCLUSIONS: The amorphous sesquioxides, Feo and Alo, were the forms that correlated best with the P fractions. A substantial proportion of the labile P appears to be organic and to be associated with Alo in organic-aluminium complexes. The progression of P sequestration appears to be slightly slower than the chemical and mineralogical indicators of ferralisation.

10.
Sci Total Environ ; 786: 147433, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971597

RESUMO

Microbial communities are considered to be functionally redundant, but few studies have tested this hypothesis empirically. In this study, we performed an in situ reciprocal transplant experiment on the surface and bottom waters of two lakes (Tsuei-Feng (T) and Yuan-Yang (Y)) with disparate trophic states and tracked changes in their microbial community composition and functions for 6 weeks using high-throughput sequencing and functional approaches. T lake's surface (Ts) and bottom (Tb) water active bacterial community (16S rRNA gene-transcript) was dominated by Actinobacteria, Bacteroidia, and Cyanobacteria, whereas Y lake's surface (Ys) and bottom (Yb) water had Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia as the dominant classes. The community composition was resistant to changes in environmental conditions following the reciprocal transplant, but their functions tended to become similar to the incubating lakes' functional profiles. A significant linear positive relationship was observed between the microbial community and functional attributes (surface: R2 = 0.5065, p < 0.0001; bottom: R2 = 0.4592, p < 0.0001), though with varying scales of similarity (1-Bray Curtis distance), suggesting partial functional redundancy. Also, the entropy-based L-divergence measure identified high divergence in community composition (surface: 1.21 ± 0.54; bottom: 1.17 ± 0.51), and relatively low divergence in functional attributes (surface: 0.04 ± 0.01; bottom: 0.04 ± 0.01) in the two lakes' surface and bottom waters, providing further support for the presence of partial functional redundancy. This study enriches our understanding of community functional relationships and establishes the presence of partial functional redundancy in freshwater ecosystems.


Assuntos
Microbiota , Microbiologia da Água , Lagos , Filogenia , RNA Ribossômico 16S/genética
11.
Microb Ecol ; 59(3): 546-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19760448

RESUMO

Yuan Yang Lake (YYL), Taiwan, experiences both winter and typhoon-initiated mixing, and each type of mixing event is characterized by contrasting environmental conditions. Previous work suggested that after typhoon mixing, bacterial communities in YYL reset to a pioneer composition and then follow a predictable trajectory of change until the next typhoon. Our goal was to continue this investigation by observing bacterial community change after a range of mixing intensities, including seasonal winter mixing. We fingerprinted aquatic bacterial communities in the epilimnion and hypolimnion using automated ribosomal intergenic spacer analysis and then assessed community response using multivariate statistics. We found a significant linear relationship between water column stability and the epilimnion to hypolimnion divergences. In comparison to the summer, we found the winter community had a distinct composition and less variation. We divided the bacterial community into population subsets according to abundance (rare, common, or dominant) and occurrence (transient or persistent) and further explored the contribution of these subsets to the overall community patterns. We found that transient taxa did not drive bacterial community patterns following weak typhoon mixing events, but contributed substantially to patterns observed following strong events. Common taxa generally did not follow the community trajectory after weak or strong events. Our results suggest intensity, frequency, and seasonality jointly contribute to aquatic bacterial response to mixing disturbance.


Assuntos
Bactérias , Água Doce/microbiologia , Estações do Ano , Microbiologia da Água , Bactérias/genética , Impressões Digitais de DNA , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Concentração de Íons de Hidrogênio , Dinâmica Populacional , Taiwan , Temperatura
12.
Microb Ecol ; 59(2): 369-78, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19727930

RESUMO

The diversity and composition of soil bacterial communities in three topographic sites (summit, foot slope, and lakeshore) from subtropical montane forest ecosystem in Taiwan were examined by using 16S rRNA gene clone library analysis. This locality is temperate, perhumid, and has low soil acidity (pH < 4), which is an uncommon ecosystem in a monsoonal part of Southeast Asia. A total of 481 clones were sequenced and placed into ten phylogenetic groups according to their similarities to type strains of described organisms. Toposequence of the transect was investigated from summit to foot slope and at the lakeshore. More than 86% of the clones were affiliated with members of the Proteobacteria, Acidobacteria, and Actinobacteria. Within the Proteobacteria, the beta-Proteobacteria was the most abundant, then alpha-Proteobacteria and gamma-Proteobacteria. Based on the Shannon diversity index (H) analysis, the bacterial community in the foot slope was the most diverse (H = 0.86) and that in summit was the least diverse (H = 0.68). The composition and diversity of soil bacterial communities in the three sites suggested no trend with topographic change. Less than 20% of the sequences were Acidobacteria-affiliated clones. The low proportion of Acidobacteria observed may be related to the high soil moisture and anaerobic microhabitats. Moreover, Shannon diversity indices revealed these bacterial communities to have lower diversity than that of other temperate (H = 0.90) and tropical forest (H = 0.82) ecosystems. The extreme acidity of soil pH and high soil moisture of this forest may explain composition and reduced the diversity of these soil bacterial communities.


Assuntos
Bactérias/genética , Biodiversidade , Microbiologia do Solo , Árvores/microbiologia , Bactérias/classificação , DNA Bacteriano/genética , Biblioteca Gênica , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise , Taiwan
13.
Microorganisms ; 8(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824517

RESUMO

Mangrove forests are one of the important ecosystems in tropical coasts because of their high primary production, which they sustain by sequestering a substantial amount of CO2 into plant biomass. These forests often experience various levels of inundation and play an important role in CH4 emissions, but the taxonomy of methanotrophs in these systems remains poorly understood. In this study, DNA-based stable isotope probing showed significant niche differentiation in active aerobic methanotrophs in response to niche differentiation in upstream and downstream mangrove soils of the Tamsui estuary in northwestern Taiwan, in which salinity levels differ between winter and summer. Methylobacter and Methylomicrobium-like Type I methanotrophs dominated methane-oxidizing communities in the field conditions and were significantly 13C-labeled in both upstream and downstream sites, while Methylobacter were well adapted to high salinity and low temperature. The Type II methanotroph Methylocystis comprised only 10-15% of all the methane oxidizers in the upstream site but less than 5% at the downstream site under field conditions. 13C-DNA levels in Methylocystis were significantly lower than those in Type I methanotrophs, while phylogenetic analysis further revealed the presence of novel methane oxidizers that are phylogenetically distantly related to Type Ia in fresh and incubated soils at a downstream site. These results suggest that Type I methanotrophs display niche differentiation associated with environmental differences between upstream and downstream mangrove soils.

14.
Sci Total Environ ; 717: 137052, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084680

RESUMO

Lentic ecosystems are important agents of local and global carbon cycling, but their contribution varies along gradients of dissolved organic matter (DOM) and productivity. We investigated how contrasting summer and autumn precipitation can shape annual and inter-annual variation in ecosystem carbon (C) flux (gross primary production (GPP), ecosystem respiration (ER), and CO2 efflux) in two subtropical lakes differing substantially in trophic state and water color. Instrumented buoys recorded time series of free-water DO, terrestrial DOM (tDOM), chlorophyll a, water temperature profiles, and meteorological measurements over five years (2009-2011 and 2014-2015). Reduced precipitation caused immediate and prolonged effects on C flux in both lakes. During the drought year (2014) GPP and ER declined by 60 to 80% and both lakes were either CO2 sinks or neutral. In the subsequent wet year (2015), GPP and ER increased by 40 to 110%, and both lakes shifted to strong net CO2 emitters. Higher ecosystem R resulted from larger GPP while higher tDOM contributed to a dramatic increase in dissolved inorganic carbon, which intensified CO2 emission in both lakes. C flux was more responsive in the clear mesotrophic lake, declining by approximately 40% in the cumulative GPP and ER, and increasing by >400% in CO2 efflux whereas changes in the oligotrophic colored lake were more modest (approximately 30% and 300% for metabolic declines and efflux increases, respectively). Temporal variation and magnitude of C flux were governed by tDOM-mediated changes in epilimnetic nutrient levels and hypolimnetic light availability. This study demonstrated terrestrial loads of DOM strongly influence the inter-annual response and sensitivity of ecosystem C flux to variation in inter-annual precipitation. Our findings have important implications for predicting the trend, magnitude, duration, and sensitivity of the response of C flux in subtropical lakes/reservoirs to future changes in precipitation patterns under altered climatic conditions.

15.
Sci Rep ; 9(1): 4689, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894580

RESUMO

The effects of biogeographical separation and parent material differences in soil bacterial structure and diversity in offshore islands remain poorly understood. In the current study, we used next-generation sequencing to characterize the differences in soil bacterial communities in five offshore subtropical granite islands (Matsu Islets, MI) of mainland China and two offshore tropical andesite islands (Orchid [OI] and Green Islands [GI]) of Taiwan. The soils of OI and GI were more acidic and had higher organic carbon and total nitrogen content than MI soils. The bacterial communities were dominated by Acidobacteria and Proteobacteria but had different relative abundance because soils were derived from different parent material and because of geographic distance. Non-metric multi-dimensional scaling revealed that the communities formed different clusters among different parent material and geographically distributed soils. The alpha-diversity in bacterial communities was higher in tropical than subtropical soils. Mantel test and redundancy analysis indicated that bacterial diversity and compositions of OI and GI soils, respectively, were positively correlated with soil pH, organic carbon, total nitrogen, microbial biomass carbon and nitrogen. These results suggest that variations in soil properties of offshore islands could result from differences in soil parent material. Distinct soils derived from different parent material and geographic distance could in turn alter the bacterial communities.


Assuntos
Acidobacteria/fisiologia , Proteobactérias/fisiologia , Acidobacteria/metabolismo , Biodiversidade , Biomassa , Carbono/metabolismo , Ilhas , Nitrogênio/metabolismo , Proteobactérias/metabolismo , Solo , Microbiologia do Solo , Taiwan
16.
Front Microbiol ; 9: 1968, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186273

RESUMO

Reforestation with different tree species could alter soil properties and in turn affect the bacterial community. However, the effects of long-term reforestation on bacterial community structure and diversity of subtropical forest soils are poorly understood. In the current study, we applied error-corrected barcoded pyrosequencing to characterize the differences in the soil bacterial community in a low mountain, subtropical forest subjected to reforestation. The communities were sampled in the summer and winter from a native broadleaved forest (BROAD-Nat) and two adjacent coniferous plantations, a Calocedrus formosana forest of 80 years (CONIF-80) and a Cunninghamia konishii forest of 40 years (CONIF-40). The soil bacterial communities among three forest types were dominated by Acidobacteria and Alphaproteobacteria. The distribution of abundant genera among communities was different. Based on the Shannon diversity index, the bacterial alpha diversity of CONIF-40 community was significantly higher than that in the CONIF-80 and BROAD-Nat soils. In both of the coniferous plantations, the soil bacterial diversity in summer was also higher than that in winter. Distribution of some abundant phylogenetic groups, K-shuff and redundancy analysis of beta diversity among communities showed that the bacterial structure of three soil communities differed between two seasons. These results suggest that seasonal differences influence the diversity and structure of bacterial soil communities and that the communities remain different even after a long period of reforestation.

17.
Microbes Environ ; 33(2): 120-126, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29681561

RESUMO

Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.


Assuntos
Microbiologia do Ar , Bactérias/classificação , Biodiversidade , Lagos/microbiologia , Filogenia , Microbiologia da Água , Bactérias/genética , DNA Bacteriano/genética , Ecossistema , Sedimentos Geológicos/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Análise Espaço-Temporal , Taiwan
18.
Sci Rep ; 7: 40561, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102291

RESUMO

Badland soils-which have high silt and clay contents, bulk density, and soil electric conductivity- cover a large area of Southern Taiwan. This study evaluated the amelioration of these poor soils by thorny bamboo, one of the few plant species that grows in badland soils. Soil physiochemical and biological parameters were measured from three thorny bamboo plantations and nearby bare lands. Results show that bamboo increased microbial C and N, soil acid-hydrolysable C, recalcitrant C, and soluble organic C of badland soils. High microbial biomass C to total organic C ratio indicates that soil organic matter was used more efficiently by microbes colonizing bamboo plantations than in bare land soils. High microbial respiration to biomass C ratio in bare land soils confirmed environmentally induced stress. Soil microbes in bare land soils also faced soil organic matter with the high ratio of recalcitrant C to total organic C. The high soil acid-hydrolysable C to total organic C ratio at bamboo plantations supported the hypothesis that decomposition of bamboo litter increased soil C in labile fractions. Overall, thorny bamboo improved soil quality, thus, this study demonstrates that planting thorny bamboo is a successful practice for the amelioration of badland soils.


Assuntos
Ecossistema , Poaceae/fisiologia , Solo/química , Biomassa , Carbono/análise , Geografia , Substâncias Húmicas/análise , Nitrogênio/análise , Microbiologia do Solo , Solubilidade , Taiwan
19.
Bot Stud ; 58(1): 23, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28560620

RESUMO

BACKGROUND: Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state 13C nuclear magnetic resonance spectroscopy in each fraction. RESULTS: The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. CONCLUSIONS: High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.

20.
Bot Stud ; 57(1): 8, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597417

RESUMO

BACKGROUND: Elevation trends of macro organisms have long been well studied. However, whether microbes also exhibit such patterns of elevation change is unknown. Here, we investigated the changes in bamboo forest soil bacterial communities along six elevation gradients, from 600 to 1800 m a.s.l. in Mt. Da-an, a subtropical montane area in Nantou county at central Taiwan. RESULTS: Data from 16S rRNA gene clone libraries revealed that more than 70 % of the six communities contained Acidobacteria and Proteobacteria, although the relative abundance differed. Nonmetric multidimensional scaling analysis of the distribution of operational taxonomic units showed differences in bamboo soil bacterial communities across gradients. The bacterial communities at 1000 and 1200 m showed greater diversity than the communities at both lower (600 and 800 m) and higher (1400 and 1800 m) elevations. In contrast to the bacterial community trend, soil C and N and microbial biomass properties increased linearly with elevation. CONCLUSION: The bamboo soil bacterial community could interact with multiple factors such as soil organic matter content and temperature, for differences in composition and diversity with change in elevation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA