Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sex Transm Dis ; 44(4): 211-218, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28282646

RESUMO

The goal of the point-of-care (POC) sexually transmitted infection (STI) Diagnostics meeting was to review the state-of-the-art research and develop recommendations for the use of POC STI diagnostics. Experts from academia, government, nonprofit, and industry discussed POC diagnostics for STIs such as Chlamydia trachomatis, human papillomavirus, Neisseria gonorrhoeae, Trichomonas vaginalis, and Treponema pallidum. Key objectives included a review of current and emerging technologies, clinical and public health benefits, POC STI diagnostics in developing countries, regulatory considerations, and future areas of development. Key points of the meeting are as follows: (i) although some rapid point-of-care tests are affordable, sensitive, specific, easy to perform, and deliverable to those who need them for select sexually transmitted infections, implementation barriers exist at the device, patient, provider, and health system levels; (ii) further investment in research and development of point-of-care tests for sexually transmitted infections is needed, and new technologies can be used to improve diagnostic testing, test uptake, and treatment; (iii) efficient deployment of self-testing in supervised (ie, pharmacies, clinics, and so on) and/or unsupervised (ie, home, offices, and so on) settings could facilitate more screening and diagnosis that will reduce the burden of sexually transmitted infections; (iv) development of novel diagnostic technologies has outpaced the generation of guidance tools and documents issued by regulatory agencies; and (v) questions regarding quality management are emerging including the mechanism by which poor-performing diagnostics are removed from the market and quality assurance of self-testing is ensured.


Assuntos
Testes Imediatos/tendências , Infecções Sexualmente Transmissíveis/diagnóstico , Congressos como Assunto , Humanos , Saúde Pública/métodos
2.
Biotechnol Bioeng ; 111(12): 2499-507, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24942535

RESUMO

The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc.


Assuntos
Imunoensaio/métodos , Polietilenoglicóis/química , Cloreto de Sódio/química , Vírus/isolamento & purificação , Bacteriófago M13 , Coloides , Ouro , Limite de Detecção , Técnicas de Sonda Molecular , Nanoestruturas , Cultura de Vírus , Vírus/química
3.
Sci Rep ; 11(1): 19653, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608196

RESUMO

Low yields of extracted cell-free DNA (cfDNA) from plasma limit continued development of liquid biopsy in cancer, especially in early-stage cancer diagnostics and cancer screening applications. We investigate a novel liquid-phase-based DNA isolation method that utilizes aqueous two-phase systems to purify and concentrate circulating cfDNA. The PHASIFY MAX and PHASIFY ENRICH kits were compared to a commonly employed solid-phase extraction method on their ability to extract cfDNA from a set of 91 frozen plasma samples from cancer patients. Droplet digital PCR (ddPCR) was used as the downstream diagnostic to detect mutant copies. Compared to the QIAamp Circulating Nucleic Acid (QCNA) kit, the PHASIFY MAX method demonstrated 60% increase in DNA yield and 171% increase in mutant copy recovery, and the PHASIFY ENRICH kit demonstrated a 35% decrease in DNA yield with a 153% increase in mutant copy recovery. A follow-up study with PHASIFY ENRICH resulted in the positive conversion of 9 out of 47 plasma samples previously determined negative with QCNA extraction (all with known positive tissue genotyping). Our results indicate that this novel extraction technique offers higher cfDNA recovery resulting in better sensitivity for detection of cfDNA mutations compared to a commonly used solid-phase extraction method.


Assuntos
Ácidos Nucleicos Livres/isolamento & purificação , DNA Tumoral Circulante/isolamento & purificação , Biópsia Líquida/métodos , Extração Líquido-Líquido/métodos , Biomarcadores Tumorais , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sensibilidade e Especificidade
4.
Microbiol Spectr ; 9(1): e0034221, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346748

RESUMO

As the COVID-19 pandemic progresses, there is an increasing need for rapid, accessible assays for SARS-CoV-2 detection. We present a clinical evaluation and real-world implementation of the INDICAID COVID-19 rapid antigen test (INDICAID rapid test). A multisite clinical evaluation of the INDICAID rapid test using prospectively collected nasal (bilateral anterior) swab samples from symptomatic subjects was performed. The INDICAID rapid test demonstrated a positive percent agreement (PPA) and negative percent agreement (NPA) of 85.3% (95% confidence interval [95% CI], 75.6% to 91.6%) and 94.9% (95% CI, 91.6% to 96.9%), respectively, compared to laboratory-based reverse transcriptase PCR (RT-PCR) using nasal specimens. The INDICAID rapid test was then implemented at COVID-19 outbreak screening centers in Hong Kong as part of a testing algorithm (termed "dual-track") to screen asymptomatic individuals for prioritization for confirmatory RT-PCR testing. In one approach, preliminary positive INDICAID rapid test results triggered expedited processing for laboratory-based RT-PCR, reducing the average time to confirmatory result from 10.85 h to 7.0 h. In a second approach, preliminary positive results triggered subsequent testing with an onsite rapid RT-PCR, reducing the average time to confirmatory result to 0.84 h. In 22,994 asymptomatic patients, the INDICAID rapid test demonstrated a PPA of 84.2% (95% CI, 69.6% to 92.6%) and an NPA of 99.9% (95% CI, 99.9% to 100%) compared to laboratory-based RT-PCR using combined nasal/oropharyngeal specimens. The INDICAID rapid test has excellent performance compared to laboratory-based RT-PCR testing and, when used in tandem with RT-PCR, reduces the time to confirmatory positive result. IMPORTANCE Laboratory-based RT-PCR, the current gold standard for COVID-19 testing, can require a turnaround time of 24 to 48 h from sample collection to result. The delayed time to result limits the effectiveness of centralized RT-PCR testing to reduce transmission and stem potential outbreaks. To address this, we conducted a thorough evaluation of the INDICAID COVID-19 rapid antigen test, a 20-minute rapid antigen test, in both symptomatic and asymptomatic populations. The INDICAID rapid test demonstrated high sensitivity and specificity with RT-PCR as the comparator method. A dual-track testing algorithm was also evaluated utilizing the INDICAID rapid test to screen for preliminary positive patients, whose samples were then prioritized for RT-PCR testing. The dual-track method demonstrated significant improvements in expediting the reporting of positive RT-PCR test results compared to standard RT-PCR testing without prioritization, offering an improved strategy for community testing and controlling SARS-CoV-2 outbreaks.


Assuntos
Antígenos Virais/análise , Doenças Assintomáticas , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/isolamento & purificação , Adulto , Técnicas de Laboratório Clínico/métodos , Reações Falso-Negativas , Reações Falso-Positivas , Feminino , Hong Kong , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes , Fatores de Tempo , Adulto Jovem
5.
Anal Bioanal Chem ; 398(7-8): 2955-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20865404

RESUMO

Availability of a rapid, accurate, and reliable point-of-care (POC) device for detection of infectious agents and pandemic pathogens, such as swine-origin influenza A (H1N1) virus, is crucial for effective patient management and outbreak prevention. Due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements, the lateral-flow (immuno)assay (LFA) has gained much attention in recent years as a possible solution. However, since the sensitivity of LFA has been shown to be inferior to that of the gold standards of pathogen detection, namely cell culture and real-time PCR, LFA remains an ineffective POC assay for preventing pandemic outbreaks. A practical solution for increasing the sensitivity of LFA is to concentrate the target agent in a solution prior to the detection step. In this study, an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 was investigated for concentrating a model virus, namely bacteriophage M13 (M13), prior to LFA. The volume ratio of the two coexisting micellar phases was manipulated to concentrate M13 in the top, micelle-poor phase. The concentration step effectively improved the M13 detection limit of the assay by tenfold from 5 × 10(8) plaque forming units (pfu)/mL to 5 × 10(7) pfu/mL. In the future, the volume ratio can be further manipulated to yield a greater concentration of a target virus and further decrease the detection limits of the LFA.


Assuntos
Bacteriófago M13/isolamento & purificação , Imunoensaio/métodos , Polietilenoglicóis/química , Humanos , Micelas , Octoxinol
6.
PLoS One ; 10(11): e0142654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556593

RESUMO

The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/µL to 0.01 ng/µL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system's potential to be applied to patient samples.


Assuntos
Imunoensaio/métodos , Testes Imediatos , Animais , Bovinos , Testes Imunológicos , Limite de Detecção , Nanopartículas , Sensibilidade e Especificidade
7.
Anal Chim Acta ; 882: 83-9, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26043095

RESUMO

The lateral-flow immunoassay (LFA) is an inexpensive and rapid paper-based assay that can potentially detect infectious disease biomarkers in resource-poor settings. Despite its many advantages that make it suitable for point-of-care diagnosis, LFA is limited by its inferior sensitivity relative to sophisticated laboratory-based assays. Our group previously introduced the use of a micellar aqueous two-phase system (ATPS), comprised of the nonionic Triton X-114 surfactant, to concentrate biomarkers in a sample and enhance their detection with LFA. However, achieving complete phase separation and target concentration using the Triton X-114 system required many hours, and the concentrated sample needed to be manually extracted and applied to LFA. Here, we successfully integrated the concentration and detection steps into a single step that occurs entirely within a portable paper-based diagnostic strip. In a novel approach, we applied the micellar ATPS to a 3-D paper design and effectively reduced the macroscopic phase separation time from 8 h to approximately 3 min. The 3-D design was integrated with LFA to simultaneously concentrate and detect Plasmodium lactate dehydrogenase (pLDH), a malaria biomarker, in both phosphate-buffered saline and fetal bovine serum within 20 min at room temperature. Compared to a conventional LFA setup with a pLDH detection limit of 10 ng µL(-1), our single-step diagnostic successfully detected pLDH at 1.0 ng µL(-1), demonstrating a 10-fold detection limit improvement and resulting in a sensitive and user-friendly assay that can be used at the point-of-care. The integration of a micellar ATPS and LFA represents a new platform that can improve and promote the use of paper-based diagnostic assays for malaria and other diseases within resource-poor settings.


Assuntos
Biomarcadores/análise , Malária/diagnóstico , Papel , Humanos , Limite de Detecção
8.
J Control Release ; 180: 33-41, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24524898

RESUMO

Targeted therapy for the treatment of cancers using nanoparticles (NPs) decorated with transferrin (Tf) has been relatively successful, as several such nanocarriers are currently undergoing clinical trials. However, since native Tf has a low probability of delivering its payload due to its short residence time in the cell, or low cellular association, there is room to significantly improve the potency of current systems. We pioneered the redesign of this targeting ligand by altering the ligand-metal interaction, as suggested by our mathematical model, and here we present the first study to investigate the enhanced therapeutic efficacy of NPs conjugated to our engineered oxalate Tf. Our mathematical model was first used to predict that NPs conjugated to oxalate Tf will exhibit a higher degree of cellular association compared to native Tf-conjugated NPs. Our in vitro trafficking experiments validated the model prediction, and subsequent in vitro and in vivo efficacy studies demonstrated that this increase in cellular association further translates into an enhanced ability to deliver chemotherapeutics. Our findings signify the importance of the cellular trafficking properties of targeting ligands, as they may significantly influence therapeutic potency when such ligands are conjugated to NPs. Given the early success of a number of native Tf-conjugated NPs in clinical trials, there is potential for using Tf-variant based therapeutics in systemic drug delivery applications for cancer treatment.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Transferrina/metabolismo , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ferro/metabolismo , Masculino , Camundongos , Modelos Biológicos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Oxálico/química , Ácido Oxálico/metabolismo , Transferrina/química
9.
Ann Biomed Eng ; 42(11): 2322-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24874602

RESUMO

The lateral-flow immunoassay (LFA) is a well-established point-of-care detection assay that is rapid, inexpensive, easy to use, and portable. However, its sensitivity is lower than that of traditional lab-based assays. Previously, we improved the sensitivity of LFA by concentrating the target biomolecules using aqueous two-phase systems (ATPSs) prior to their detection. In this study, we report the first-ever utilization of dextran-coated gold nanoprobes (DGNPs) as the colorimetric indicator for LFA. In addition, the DGNPs are the key component in our pre-concentration process, where they remain stable and functional in the high salt environment of our ATPS solution, capture the target protein with conjugated antibodies, and allow the rapid concentration of the target protein in our ATPS for use in the subsequent LFA detection step. By combining this pre-concentration step with LFA, the detection limit of LFA for a model protein was improved by 10-fold. We further improved our ATPS from previous studies by enabling phase separation at room temperature in 30 min. By using DGNPs for the concentration and detection of protein biomarkers in the sequential combination of the ATPS and LFA steps, we move closer to developing an effective protein detection assay which uses no power or lab-based equipment.


Assuntos
Anticorpos/química , Dextranos/química , Ouro/química , Nanopartículas Metálicas/química , Transferrina/análise , Anticorpos/imunologia , Biomarcadores/análise , Citratos/química , Imunoensaio/instrumentação , Fosfatos/química , Polietilenoglicóis/química , Compostos de Potássio/química , Transferrina/imunologia
10.
Lab Chip ; 14(16): 3021-8, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24950897

RESUMO

The lateral-flow immunoassay (LFA) is an inexpensive point-of-care (POC) paper-based diagnostic device with the potential to rapidly detect disease biomarkers in resource-poor settings. Although LFA is inexpensive, easy to use, and requires no laboratory equipment, it is limited by its sensitivity, which remains inferior to that of gold standard laboratory-based assays. Our group is the only one to have previously utilized various aqueous two-phase systems (ATPSs) to enhance LFA detection. In those studies, the sample was concentrated by an ATPS in a test tube and could only be applied to LFA after it had been extracted manually. Here, we bypass the extraction step by seamlessly integrating a polyethylene glycol-potassium phosphate ATPS with downstream LFA detection in a simple, inexpensive, power-free, and portable all-in-one diagnostic device. We discovered a new phenomenon in which the target biomarkers simultaneously concentrate as the ATPS solution flows through the paper membranes, and our device features a 3-D paper well that was designed to exploit this phenomenon. Studies with this device, which were performed at room temperature in under 25 min, demonstrated a 10-fold improvement in the detection limit of a model protein, transferrin. Our next-generation LFA technology is rapid, affordable, easy-to-use, and can be applied to existing LFA products, thereby providing a new platform for revolutionizing the current state of disease diagnosis in resource-poor settings.


Assuntos
Biomarcadores/análise , Imunoensaio/instrumentação , Imunoensaio/métodos , Papel , Desenho de Equipamento , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA